हिंदी

Lim X → 0 5 X + 4 Sin 3 X 4 Sin 2 X + 7 X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\lim_{x \to 0} \frac{5x + 4 \sin 3x}{4 \sin 2x + 7x}\]

उत्तर

\[\lim_{x \to 0} \left[ \frac{5x + 4 \sin 3x}{4 \sin 2x + 7x} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{5x + 4 \times \frac{\sin 3x}{3x} \times 3x}{\frac{4 \sin 2x}{2x} \times 2x + 7x} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\left( 5 + 4 \frac{\sin 3x \times 3}{3x} \right)x}{\left( 4\frac{\sin 2x}{2x} \times 2 + 7 \right)x} \right]\]
\[ = \frac{5 + 4 \times 3}{4 \times 2 + 7} \left[ \because \lim_{x \to 0} \frac{\sin \left( 3x \right)}{3x} = 1 \right]\]
\[ = \frac{17}{15}\]

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 29: Limits - Exercise 29.7 [पृष्ठ ५१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 29 Limits
Exercise 29.7 | Q 55 | पृष्ठ ५१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\lim_{x \to 1} \frac{x^2 + 1}{x + 1}\] 


\[\lim_{x \to 0} \frac{x^{2/3} - 9}{x - 27}\]


\[\lim_{x \to 3} \frac{x^2 - 4x + 3}{x^2 - 2x - 3}\] 


\[\lim_{x \to \sqrt{2}} \frac{x^2 - 2}{x^2 + \sqrt{2}x - 4}\]


\[\lim_{x \to 4} \frac{x^2 - 16}{\sqrt{x} - 2}\] 


\[\lim_{x \to - 2} \frac{x^3 + x^2 + 4x + 12}{x^3 - 3x + 2}\]


\[\lim_{x \to \infty} \frac{3 x^{- 1} + 4 x^{- 2}}{5 x^{- 1} + 6 x^{- 2}}\]


\[\lim_{x \to \infty} \left[ x\left\{ \sqrt{x^2 + 1} - \sqrt{x^2 - 1} \right\} \right]\] 


\[\lim_{n \to \infty} \left[ \frac{1 + 2 + 3 . . . . . . n - 1}{n^2} \right]\] 


\[\lim_{x \to 0} \frac{\tan mx}{\tan nx}\] 


\[\lim_{x \to 0} \frac{3 \sin 2x + 2x}{3x + 2 \tan 3x}\] 


\[\lim_{x \to 0} \frac{1 - \cos 2x}{\cos 2x - \cos 8x}\]


\[\lim_{x \to 0} \frac{x^2 + 1 - \cos x}{x \sin x}\] 


\[\lim_{x \to 0} \frac{2 \sin x^\circ - \sin 2 x^\circ}{x^3}\] 


\[\lim_{x \to 0} \frac{x \tan x}{1 - \cos 2x}\] 


\[\lim_\theta \to 0 \frac{\sin 4\theta}{\tan 3\theta}\] 


Evaluate the following limit:

\[\lim_{x \to \frac{\pi}{3}} \frac{\sqrt{1 - \cos6x}}{\sqrt{2}\left( \frac{\pi}{3} - x \right)}\]


\[\lim_{x \to a} \frac{\cos x - \cos a}{x - a}\] 


\[\lim_{x \to \frac{\pi}{2}} \frac{\cot x}{\frac{\pi}{2} - x}\]


\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} - \cos x - \sin x}{\left( \frac{\pi}{4} - x \right)^2}\] 


\[\lim_{x \to a} \frac{\cos x - \cos a}{\sqrt{x} - \sqrt{a}}\]


\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} - \cos x - \sin x}{\left( 4x - \pi \right)^2}\]


\[\lim_{x \to 0} \frac{\log \left( a + x \right) - \log a}{x}\]


\[\lim_{x \to 0} \frac{\log \left( 3 + x \right) - \log \left( 3 - x \right)}{x}\] 


\[\lim_{x \to 0^-} \frac{\sin \left[ x \right]}{\left[ x \right]} .\] 


Write the value of \[\lim_{x \to 0^-} \frac{\sin \left[ x \right]}{\left[ x \right]} .\]


\[\lim_{n \to \infty} \left\{ \frac{1}{1 - n^2} + \frac{2}{1 - n^2} + . . . + \frac{n}{1 - n^2} \right\}\]


If \[\lim_{x \to 1} \frac{x + x^2 + x^3 + . . . + x^n - n}{x - 1} = 5050\] then n equal


The value of \[\lim_{x \to 0} \frac{1 - \cos x + 2 \sin x - \sin^3 x - x^2 + 3 x^4}{\tan^3 x - 6 \sin^2 x + x - 5 x^3}\] is 


The value of \[\lim_{x \to \infty} \frac{n!}{\left( n + 1 \right)! - n!}\] 


Evaluate the following limits: `lim_(x -> "a")[((z + 2)^(3/2) - ("a" + 2)^(3/2))/(z - "a")]`


Evaluate the following Limits: `lim_(x -> "a") ((x + 2)^(5/3) - ("a" + 2)^(5/3))/(x - "a")`


`lim_(x->3) (x^5 - 243)/(x^3 - 27)` = ?


Let f(x) = `{{:(3^(1/x);   x < 0","                "then at"  x = 0),(lambda[x];   x ≥ 0","   lambda ∈ "R"):}`

Evaluate the Following limit:

`lim_(x->5) [(x^3 -125)/(x^5-3125)]`


Evaluate the following limit :

`lim_(x->3)[sqrt(x+6)/x]`


Evaluate the following limit:

`lim_(x->3)[sqrt(x+6)/x]`


Evaluate the following limit.

`lim_(x->5)[(x^3 -125)/(x^5 - 3125)]`


Evaluate the following limit:

`lim _ (x -> 5) [(x^3 - 125) / (x^5 - 3125)]`


Evaluate the following limit:

`\underset{x->3}{lim}[sqrt(x +6)/(x)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×