हिंदी

Lim X → 0 Sin 3 X + 7 X 4 X + Sin 2 Xv - Mathematics

Advertisements
Advertisements

प्रश्न

\[\lim_{x \to 0} \frac{\sin 3x + 7x}{4x + \sin 2x}\]

उत्तर

\[\lim_{x \to 0} \left[ \frac{\sin 3x + 7x}{4x + \sin 2x} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\frac{\sin 3x}{3x} \times 3x + 7x}{4x + \frac{\sin 2x}{2x} \times 2x} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\left( \frac{\sin 3x}{3x} \times 3 + 7 \right)x}{\left( 4 + \frac{\sin 2x}{2x} \times 2 \right)x} \right]\]
\[ = \frac{3 + 7}{4 + 2}\]
\[ = \frac{10}{6} = \frac{5}{3}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 29: Limits - Exercise 29.7 [पृष्ठ ५१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 29 Limits
Exercise 29.7 | Q 54 | पृष्ठ ५१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\lim_{x \to a} \frac{\sqrt{x} + \sqrt{a}}{x + a}\] 


\[\lim_{x \to - 5} \frac{2 x^2 + 9x - 5}{x + 5}\] 


\[\lim_{x \to 4} \frac{x^2 - 16}{\sqrt{x} - 2}\] 


\[\lim_{x \to 1} \frac{x^3 + 3 x^2 - 6x + 2}{x^3 + 3 x^2 - 3x - 1}\]


\[\lim_{x \to a} \frac{\left( x + 2 \right)^{3/2} - \left( a + 2 \right)^{3/2}}{x -  a}\]


\[\lim_{x \to a} \frac{x^{2/7} - a^{2/7}}{x - a}\] 


Evaluate: \[\lim_{n \to \infty} \frac{1^4 + 2^4 + 3^4 + . . . + n^4}{n^5} - \lim_{n \to \infty} \frac{1^3 + 2^3 + . . . + n^3}{n^5}\] 


\[\lim_{x \to 0} \frac{3 \sin x - 4 \sin^3 x}{x}\] 


\[\lim_{x \to 0} \frac{\cos ax - \cos bx}{\cos cx - \cos dx}\] 


\[\lim_{x \to 0} \frac{\sin^2 4 x^2}{x^4}\] 


\[\lim_{x \to 0} \frac{\sin \left( 2 + x \right) - \sin \left( 2 - x \right)}{x}\]


\[\lim_{x \to 0} \frac{1 - \cos 2x + \tan^2 x}{x \sin x}\] 


\[\lim_{x \to 0} \frac{x^2 + 1 - \cos x}{x \sin x}\] 


\[\lim_{x \to 0} \frac{2 \sin x^\circ - \sin 2 x^\circ}{x^3}\] 


\[\lim_{x \to 0} \frac{x \tan x}{1 - \cos 2x}\] 


\[\lim_{x \to 0} \frac{\sin \left( 3 + x \right) - \sin \left( 3 - x \right)}{x}\] 


\[\lim_{x \to 0} \frac{3 \sin^2 x - 2 \sin x^2}{3 x^2}\] 


\[\lim_{x \to 0} \left( cosec x - \cot x \right)\]


\[\lim_{x \to \frac{\pi}{3}} \frac{\sqrt{3} - \tan x}{\pi - 3x}\]


\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} - \cos x - \sin x}{\left( \frac{\pi}{4} - x \right)^2}\] 


\[\lim_{x \to 1} \frac{1 + \cos \pi x}{\left( 1 - x \right)^2}\] 


\[\lim_{x \to 2} \frac{x^2 - x - 2}{x^2 - 2x + \sin \left( x - 2 \right)}\] 


\[\lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{1 - \sqrt{2} \sin x}\] 


\[\lim_{x \to 0} \frac{8^x - 2^x}{x}\]


Write the value of \[\lim_{x \to 0^-} \left[ x \right] .\]

 

\[\lim 2_{h \to 0} \left\{ \frac{\sqrt{3} \sin \left( \pi/6 + h \right) - \cos \left( \pi/6 + h \right)}{\sqrt{3} h \left( \sqrt{3} \cos h - \sin h \right)} \right\}\] 


The value of \[\lim_{x \to 0} \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}\] 


\[\lim_{x \to \infty} \frac{\left| x \right|}{x}\]  is equal to 


Evaluate the following limits: `lim_(x -> 0)[((1 - x)^8 - 1)/((1 - x)^2 - 1)]`


Evaluate the following limits: `lim_(x -> 5)[(x^3 - 125)/(x^2 - 25)]`


`lim_(x->3) (x^5 - 243)/(x^3 - 27)` = ?


If the value of `lim_(x -> 1) (1 - (1 - x))^"m"/x` is 99, then n = ______.


Evaluate `lim_(h -> 0) ((a + h)^2 sin (a + h) - a^2 sina)/h`


`1/(ax^2 + bx + c)`


Evaluate the following limit :

`lim_(x->5)[(x^3-125)/(x^5-3125)]`


Evaluate the following limit:

`lim_(x->3)[sqrt(x+6)/x]`


Evaluate the following limits: `lim_(x -> 3) [sqrt(x + 6)/x]`


Evaluate the Following limit:

`lim_(x->7)[[(root[3][x] - root[3][7])(root[3][x] + root[3][7])] / (x - 7)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×