हिंदी

The Value of Lim X → 0 √ a 2 − a X + X 2 − √ a 2 + a X + X 2 √ a + X − √ a − X - Mathematics

Advertisements
Advertisements

प्रश्न

The value of \[\lim_{x \to 0} \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}\] 

विकल्प

  • \[\sqrt{a}\] 

  • \[- \sqrt{a}\]

MCQ

उत्तर

\[- \sqrt{a}\] 

\[\lim_{x \to 0} \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}\]
\[\text{ Multiplying } \left( \sqrt{a^2 - ax + x^2} + \sqrt{a^2 + ax + x^2} \right) and \left( \sqrt{a + x} + \sqrt{a - x} \right) in N^r and D^r : \]
\[ \lim_{x \to 0} \frac{\left( a^2 + x^2 - ax - a^2 - ax - x^2 \right) \left( \sqrt{a + x} + \sqrt{a - x} \right)}{\left( a + x - a + x \right) \left( \sqrt{x^2 - ax + x^2} + \sqrt{a^2 + ax + x^2} \right)}\]
\[ \lim_{x \to 0} \frac{- 2ax \left( \sqrt{a + x} + \sqrt{a - x} \right)}{2x \left( \sqrt{a^2 + ax + x^2} + \sqrt{a^2 + ax + x^2} \right)}\]
\[ = \frac{- a\left( 2\sqrt{a} \right)}{2a} = - \sqrt{a}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 29: Limits - Exercise 29.13 [पृष्ठ ८०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 29 Limits
Exercise 29.13 | Q 31 | पृष्ठ ८०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\lim_{x \to \sqrt{3}} \frac{x^4 - 9}{x^2 + 4\sqrt{3}x - 15}\]


\[\lim_{x \to 2} \left[ \frac{1}{x - 2} - \frac{2\left( 2x - 3 \right)}{x^3 - 3 x^2 + 2x} \right]\] 


\[\lim_{x \to 27} \frac{\left( x^{1/3} + 3 \right) \left( x^{1/3} - 3 \right)}{x - 27}\] 


\[\lim_{x \to a} \frac{x^{2/3} - a^{2/3}}{x^{3/4} - a^{3/4}}\] 


\[\lim_{x \to \infty} \sqrt{x + 1} - \sqrt{x}\] 


\[\lim_{x \to \infty} \left[ \frac{x^4 + 7 x^3 + 46x + a}{x^4 + 6} \right]\] where a is a non-zero real number. 


Evaluate: \[\lim_{n \to \infty} \frac{1 . 2 + 2 . 3 + 3 . 4 + . . . + n\left( n + 1 \right)}{n^3}\] 


\[\lim_{x \to 0} \frac{7x \cos x - 3 \sin x}{4x + \tan x}\] 


\[\lim_{x \to 0} \frac{5 x \cos x + 3 \sin x}{3 x^2 + \tan x}\] 


\[\lim_{x \to 0} \frac{\sin 5x - \sin 3x}{\sin x}\] 


\[\lim_{h \to 0} \frac{\left( a + h \right)^2 \sin \left( a + h \right) - a^2 \sin a}{h}\] 


\[\lim_{x \to 0} \frac{1 - \cos 2x}{\cos 2x - \cos 8x}\]


\[\lim_\theta \to 0 \frac{1 - \cos 4\theta}{1 - \cos 6\theta}\] 


\[\lim_{x \to 0} \frac{ax + x \cos x}{b \sin x}\]


\[\lim_{x \to 0} \frac{1 - \cos 5x}{1 - \cos 6x}\]


\[\lim_{x \to 0} \frac{cosec x - \cot x}{x}\]


\[\lim_{x \to 0} \frac{3 \sin x - \sin 3x}{x^3}\]


Evaluate the following limit: 

\[\lim_{h \to 0} \frac{\left( a + h \right)^2 \sin\left( a + h \right) - a^2 \sin a}{h}\] 


If  \[\lim_{x \to 0} kx  cosec x = \lim_{x \to 0} x  cosec kx,\] 


\[\lim_{x \to \pi} \frac{\sin x}{\pi - x}\]


Evaluate the following limit:

\[\lim_{x \to \frac{\pi}{3}} \frac{\sqrt{1 - \cos6x}}{\sqrt{2}\left( \frac{\pi}{3} - x \right)}\]


\[\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{\left( \frac{\pi}{2} - x \right)^2}\]


\[\lim_{x \to \frac{\pi}{3}} \frac{\sqrt{3} - \tan x}{\pi - 3x}\]


\[\lim_{x \to \frac{\pi}{2}} \frac{\left( \frac{\pi}{2} - x \right) \sin x - 2 \cos x}{\left( \frac{\pi}{2} - x \right) + \cot x}\]


\[\lim_{x \to \pi} \frac{1 + \cos x}{\tan^2 x}\] 


Write the value of \[\lim_{x \to 0^-} \left[ x \right] .\]


\[\lim_{x \to \infty} \frac{\sin x}{x} .\] 


\[\lim_{x \to \pi/3} \frac{\sin \left( \frac{\pi}{3} - x \right)}{2 \cos x - 1}\] is equal to 


\[\lim_{x \to \infty} \frac{\left| x \right|}{x}\]  is equal to 


Evaluate the following limits: `lim_(y -> 1) [(2y - 2)/(root(3)(7 + y) - 2)]`


Evaluate the following Limit:

`lim_(x -> 0) ((1 + x)^"n" - 1)/x`


Evaluate `lim_(h -> 0) ((a + h)^2 sin (a + h) - a^2 sina)/h`


Let `f(x) = {{:((k cos x)/(pi - 2x)",", "when"  x ≠ pi/2),(3",", x = pi/2  "and if"  f(x) = f(pi/2)):}` find the value of k.


Evaluate the following limits: `lim_(x ->3) [sqrt(x + 6)/x]`


Evaluate the Following limit:

`lim_(x->5) [(x^3 -125)/(x^5-3125)]`


Evaluate the following limit :

`lim_(x->7)[[(root3(x)- root3(7))(root3(x) + root3(7)))/(x-7)]`


Evaluate the Following limit:

`lim_(x->7)[((root(3)(x)-root(3)(7))(root(3)(x)+root(3)(7)))/(x-7)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×