Advertisements
Advertisements
प्रश्न
\[\lim_{x \to \pi/3} \frac{\sin \left( \frac{\pi}{3} - x \right)}{2 \cos x - 1}\] is equal to
विकल्प
\[\sqrt{3}\]
- \[\frac{1}{2}\]
\[\frac{1}{\sqrt{3}}\]
\[\sqrt{3}\]
उत्तर
\[\frac{1}{\sqrt{3}}\]
\[\lim_{x \to \frac{\pi}{3}} \frac{\sin \left( \frac{\pi}{3} - x \right)}{2 \cos x - 1}\]
\[ = \lim_{h \to 0} \frac{\sin \frac{\pi}{3} - \left( \frac{\pi}{3} - h \right)\left[ \right]}{2 \cos \left( \frac{\pi}{3} - h \right) - 1}\]
\[ = \lim_{h \to 0} \frac{\sin h}{2\left[ \cos \frac{\pi}{3}\cos h + \sin \frac{\pi}{3} \sin h \right] - 1}\]
\[ = \lim_{h \to 0} \frac{\sin h}{2\left[ \frac{1}{2}\cos h + \frac{\sqrt{3}}{2} \sin h \right] - 1}\]
\[ = \lim_{h \to 0} \frac{\sin h}{\cos h + \sqrt{3} \sin h - 1}\]
\[ = \lim_{h \to 0} \frac{\sin h}{- 2 \sin^2 \frac{h}{2} + \sqrt{3} \sin h} \]
\[\text{ Dividing } N^r \text{ and } D^r \text{ by } h: \]
\[ = \lim_{h \to 0} \frac{\frac{\sin h}{h}}{- \left( 2 \times \frac{h}{4} \right) \left( \frac{\sin^2 \frac{h}{2}}{h \times \frac{h}{4}} \right) + \frac{\sqrt{3} \sin h}{h}}\]
\[ = \frac{1}{\sqrt{3}}\]
APPEARS IN
संबंधित प्रश्न
Suppose f(x) = `{(a+bx, x < 1),(4, x = 1),(b-ax, x > 1):}` and if `lim_(x -> 1) f(x) = f(1)` what are possible values of a and b?
\[\lim_{x \to 3} \frac{\sqrt{2x + 3}}{x + 3}\]
\[\lim_{x \to 1} \frac{\sqrt{x + 8}}{\sqrt{x}}\]
\[\lim_{x \to 0} \frac{3x + 1}{x + 3}\]
\[\lim_{x \to 5} \frac{x^3 - 125}{x^2 - 7x + 10}\]
\[\lim_{x \to 3} \left( \frac{1}{x - 3} - \frac{3}{x^2 - 3x} \right)\]
\[\lim_{x \to 1} \frac{x^4 - 3 x^3 + 2}{x^3 - 5 x^2 + 3x + 1}\]
\[\lim_{x \to a} \frac{\left( x + 2 \right)^{3/2} - \left( a + 2 \right)^{3/2}}{x - a}\]
\[\lim_{x \to a} \frac{x^{5/7} - a^{5/7}}{x^{2/7} - a^{2/7}}\]
If \[\lim_{x \to a} \frac{x^3 - a^3}{x - a} = \lim_{x \to 1} \frac{x^4 - 1}{x - 1},\] find all possible values of a.
\[\lim_{x \to \infty} \sqrt{x^2 + cx - x}\]
\[\lim_{n \to \infty} \left[ \frac{1^2 + 2^2 + . . . + n^2}{n^3} \right]\]
\[\lim_{n \to \infty} \left[ \frac{1 + 2 + 3 . . . . . . n - 1}{n^2} \right]\]
\[f\left( x \right) = \frac{a x^2 + b}{x^2 + 1}, \lim_{x \to 0} f\left( x \right) = 1\] and \[\lim_{x \to \infty} f\left( x \right) = 1,\]then prove that f(−2) = f(2) = 1
\[\lim_{x \to 0} \frac{x^2}{\sin x^2}\]
\[\lim_{x \to 0} \frac{\tan mx}{\tan nx}\]
\[\lim_{x \to 0} \frac{\sin x^n}{x^n}\]
\[\lim_\theta \to 0 \frac{\sin 3\theta}{\tan 2\theta}\]
\[\lim_{x \to 0} \frac{\tan x - \sin x}{\sin 3x - 3 \sin x}\]
\[\lim_{x \to 0} \frac{\sin 2x \left( \cos 3x - \cos x \right)}{x^3}\]
\[\lim_{x \to 0} \frac{x^3 \cot x}{1 - \cos x}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}{x}\]
\[\lim_\theta \to 0 \frac{\sin 4\theta}{\tan 3\theta}\]
\[\lim_{x \to 0} \frac{5x + 4 \sin 3x}{4 \sin 2x + 7x}\]
Evaluate the following limit:
\[\lim_{x \to 0} \frac{\sin\left( \alpha + \beta \right)x + \sin\left( \alpha - \beta \right)x + \sin2\alpha x}{\cos^2 \beta x - \cos^2 \alpha x}\]
Evaluate the following limit:
\[\lim_{x \to \frac{\pi}{3}} \frac{\sqrt{1 - \cos6x}}{\sqrt{2}\left( \frac{\pi}{3} - x \right)}\]
\[\lim_{x \to \frac{\pi}{3}} \frac{\sqrt{3} - \tan x}{\pi - 3x}\]
Evaluate the following limit:
\[\lim_{x \to \pi} \frac{1 - \sin\frac{x}{2}}{\cos\frac{x}{2}\left( \cos\frac{x}{4} - \sin\frac{x}{4} \right)}\]
\[\lim_{x \to \frac{\pi}{6}} \frac{\cot^2 x - 3}{cosec x - 2}\]
Write the value of \[\lim_{x \to 2} \frac{\left| x - 2 \right|}{x - 2} .\]
Write the value of \[\lim_{x \to 0} \frac{\sin x^\circ}{x} .\]
\[\lim_{x \to 1} \frac{\sin \pi x}{x - 1}\]
The value of \[\lim_{x \to \infty} \frac{\sqrt{1 + x^4} + \left( 1 + x^2 \right)}{x^2}\] is
The value of \[\lim_{x \to 0} \frac{1 - \cos x + 2 \sin x - \sin^3 x - x^2 + 3 x^4}{\tan^3 x - 6 \sin^2 x + x - 5 x^3}\] is
Evaluate the following limit:
`lim_(x->3)[(sqrt(x+6))/x]`
Evaluate the Following limit:
`lim_(x->7)[((root(3)(x)-root(3)(7))(root(3)(x)+root(3)(7)))/(x-7)]`
Evaluate the Following limit:
`lim_(x->7)[[(root[3][x] - root[3][7])(root[3][x] + root[3][7])] / (x - 7)]`