मराठी

Lim X → π / 3 Sin ( π 3 − X ) 2 Cos X − 1 is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

\[\lim_{x \to \pi/3} \frac{\sin \left( \frac{\pi}{3} - x \right)}{2 \cos x - 1}\] is equal to 

पर्याय

  • \[\sqrt{3}\]

  • \[\frac{1}{2}\]

     

  • \[\frac{1}{\sqrt{3}}\]

  • \[\sqrt{3}\]

MCQ

उत्तर

\[\frac{1}{\sqrt{3}}\] 

\[\lim_{x \to \frac{\pi}{3}} \frac{\sin \left( \frac{\pi}{3} - x \right)}{2 \cos x - 1}\]
\[ = \lim_{h \to 0} \frac{\sin \frac{\pi}{3} - \left( \frac{\pi}{3} - h \right)\left[ \right]}{2 \cos \left( \frac{\pi}{3} - h \right) - 1}\]
\[ = \lim_{h \to 0} \frac{\sin h}{2\left[ \cos \frac{\pi}{3}\cos h + \sin \frac{\pi}{3} \sin h \right] - 1}\]
\[ = \lim_{h \to 0} \frac{\sin h}{2\left[ \frac{1}{2}\cos h + \frac{\sqrt{3}}{2} \sin h \right] - 1}\]
\[ = \lim_{h \to 0} \frac{\sin h}{\cos h + \sqrt{3} \sin h - 1}\]
\[ = \lim_{h \to 0} \frac{\sin h}{- 2 \sin^2 \frac{h}{2} + \sqrt{3} \sin h} \]
\[\text{ Dividing } N^r \text{ and } D^r \text{ by } h: \]
\[ = \lim_{h \to 0} \frac{\frac{\sin h}{h}}{- \left( 2 \times \frac{h}{4} \right) \left( \frac{\sin^2 \frac{h}{2}}{h \times \frac{h}{4}} \right) + \frac{\sqrt{3} \sin h}{h}}\]
\[ = \frac{1}{\sqrt{3}}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 29: Limits - Exercise 29.13 [पृष्ठ ७९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 29 Limits
Exercise 29.13 | Q 21 | पृष्ठ ७९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\lim_{x \to 3} \frac{\sqrt{2x + 3}}{x + 3}\] 


\[\lim_{x \to 3} \frac{x^4 - 81}{x^2 - 9}\] 


\[\lim_{x \to 2} \left( \frac{1}{x - 2} - \frac{4}{x^3 - 2 x^2} \right)\] 


\[\lim_{x \to 1} \frac{x^4 - 3 x^3 + 2}{x^3 - 5 x^2 + 3x + 1}\] 


\[\lim_{x \to 2} \frac{x^3 + 3 x^2 - 9x - 2}{x^3 - x - 6}\] 


\[\lim_{x \to 2} \left[ \frac{1}{x - 2} - \frac{2\left( 2x - 3 \right)}{x^3 - 3 x^2 + 2x} \right]\] 


Evaluate the following limit:

\[\lim_{x \to 1} \frac{x^7 - 2 x^5 + 1}{x^3 - 3 x^2 + 2}\] 


\[\lim_{x \to a} \frac{x^{5/7} - a^{5/7}}{x^{2/7} - a^{2/7}}\] 


If \[\lim_{x \to 3} \frac{x^n - 3^n}{x - 3} = 108,\]  find the value of n


\[\lim_{x \to \infty} \sqrt{x + 1} - \sqrt{x}\] 


\[\lim_{n \to \infty} \left[ \frac{\left( n + 2 \right)! + \left( n + 1 \right)!}{\left( n + 2 \right)! - \left( n + 1 \right)!} \right]\] 


\[\lim_{n \to \infty} \left[ \frac{1^3 + 2^3 + . . . . n^3}{n^4} \right]\]


\[\lim_{x \to 0} \frac{\tan^2 3x}{x^2}\] 


\[\lim_\theta \to 0 \frac{\sin 3\theta}{\tan 2\theta}\] 


\[\lim_{x \to 0} \frac{\tan 3x - 2x}{3x - \sin^2 x}\] 


\[\lim_{x \to 0} \frac{1 - \cos 2x}{\cos 2x - \cos 8x}\]


\[\lim_{x \to 0} \frac{\sin \left( a + x \right) + \sin \left( a - x \right) - 2 \sin a}{x \sin x}\] 


\[\lim_{x \to 0} \frac{1 - \cos 2x}{3 \tan^2 x}\] 


\[\lim_\theta \to 0 \frac{\sin 4\theta}{\tan 3\theta}\] 


Evaluate the following limits: 

\[\lim_{x \to 0} \frac{2\sin x - \sin2x}{x^3}\] 

 


\[\lim_{x \to 0} \frac{cosec x - \cot x}{x}\]


Evaluate the following limit: 

\[\lim_{x \to 0} \frac{\sin\left( \alpha + \beta \right)x + \sin\left( \alpha - \beta \right)x + \sin2\alpha x}{\cos^2 \beta x - \cos^2 \alpha x}\]


Evaluate the following limits: 

\[\lim_{x \to 0} \frac{\cos ax - \cos bx}{\cos cx - 1}\] 


Evaluate the following limit: 

\[\lim_{h \to 0} \frac{\left( a + h \right)^2 \sin\left( a + h \right) - a^2 \sin a}{h}\] 


\[\lim_{x \to 0} \left( \cos x \right)^{1/\sin x}\] 


If \[f\left( x \right) = x \sin \left( 1/x \right), x \neq 0,\]  then \[\lim_{x \to 0} f\left( x \right) =\] 


\[\lim_{x \to \infty} \frac{\sin x}{x}\] equals 


\[\lim_{n \to \infty} \frac{n!}{\left( n + 1 \right)! + n!}\]  is equal to


If α is a repeated root of ax2 + bx + c = 0, then \[\lim_{x \to \alpha} \frac{\tan \left( a x^2 + bx + c \right)}{\left( x - \alpha \right)^2}\]


The value of \[\lim_{x \to 0} \frac{1 - \cos x + 2 \sin x - \sin^3 x - x^2 + 3 x^4}{\tan^3 x - 6 \sin^2 x + x - 5 x^3}\] is 


The value of \[\lim_{x \to \infty} \frac{\left( x + 1 \right)^{10} + \left( x + 2 \right)^{10} + . . . + \left( x + 100 \right)^{10}}{x^{10} + {10}^{10}}\] is 


Evaluate the following limits: `lim_(x -> 0)[(root(3)(1 + x) - sqrt(1 + x))/x]`


Evaluate the following Limit:

`lim_(x -> 0) ((1 + x)^"n" - 1)/x`


If the value of `lim_(x -> 1) (1 - (1 - x))^"m"/x` is 99, then n = ______.


`1/(ax^2 + bx + c)`


Evaluate the following limit:

`lim_(x->5)[(x^3-125)/(x^5-3125)]`


Evaluate the Following limit: 

`lim_ (x -> 3) [sqrt (x + 6)/ x]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×