Advertisements
Advertisements
प्रश्न
\[\lim_{x \to \infty} \sqrt{x + 1} - \sqrt{x}\]
उत्तर
\[\lim_{x \to \infty} \left( \sqrt{x + 1} - \sqrt{x} \right)\]
It is of the form ∞–∞.
On rationalising, we get:
\[\lim_{x \to \infty} \left( \sqrt{x + 1} - \sqrt{x} \right) \times \left( \frac{\sqrt{x + 1} + \sqrt{x}}{\sqrt{x + 1} + \sqrt{x}} \right)\]
\[ = \lim_{x \to \infty} \left( \frac{x + 1 - x}{\left( \sqrt{x + 1} + \sqrt{x} \right)} \right)\]
\[ = \frac{1}{\infty}\]
\[ = 0\]
APPEARS IN
संबंधित प्रश्न
Show that \[\lim_{x \to 0} \frac{x}{\left| x \right|}\] does not exist.
\[\lim_{x \to 1} \frac{\sqrt{x + 8}}{\sqrt{x}}\]
\[\lim_{x \to 1} \frac{1 + \left( x - 1 \right)^2}{1 + x^2}\]
\[\lim_{x \to 2} \left( 3 - x \right)\]
\[\lim_{x \to 3} \frac{x^2 - 4x + 3}{x^2 - 2x - 3}\]
\[\lim_{x \to 5} \frac{x^2 - 9x + 20}{x^2 - 6x + 5}\]
\[\lim_{x \to - 1} \frac{x^3 + 1}{x + 1}\]
\[\lim_{x \to 2} \left( \frac{1}{x - 2} - \frac{2}{x^2 - 2x} \right)\]
\[\lim_{x \to 1} \frac{x^4 - 3 x^3 + 2}{x^3 - 5 x^2 + 3x + 1}\]
\[\lim_{x \to 0} \frac{\left( 1 + x \right)^6 - 1}{\left( 1 + x \right)^2 - 1}\]
If \[\lim_{x \to 3} \frac{x^n - 3^n}{x - 3} = 108,\] find the value of n.
If \[\lim_{x \to a} \frac{x^5 - a^5}{x - a} = 405,\]find all possible values of a.
Show that \[\lim_{x \to \infty} \left( \sqrt{x^2 + x + 1} - x \right) \neq \lim_{x \to \infty} \left( \sqrt{x^2 + 1} - x \right)\]
\[\lim_{x \to 0} \frac{\tan^2 3x}{x^2}\]
\[\lim_{x \to 0} \frac{1 - \cos 2x}{\cos 2x - \cos 8x}\]
\[\lim_\theta \to 0 \frac{\sin 4\theta}{\tan 3\theta}\]
Evaluate the following limit:
\[\lim_{x \to 0} \frac{\sin\left( \alpha + \beta \right)x + \sin\left( \alpha - \beta \right)x + \sin2\alpha x}{\cos^2 \beta x - \cos^2 \alpha x}\]
\[\lim_{x \to \frac{\pi}{2}} \frac{\sqrt{2 - \sin x} - 1}{\left( \frac{\pi}{2} - x \right)^2}\]
\[\lim_{x \to 0} \frac{\log \left( 3 + x \right) - \log \left( 3 - x \right)}{x}\]
\[\lim_{x \to 0} \left( \cos x + a \sin bx \right)^{1/x}\]
Write the value of \[\lim_{x \to 0} \frac{\sqrt{1 - \cos 2x}}{x} .\]
\[\lim_{x \to \pi} \frac{\sin x}{x - \pi} .\]
Write the value of \[\lim_{x \to 1^-} x - \left[ x \right] .\]
Write the value of \[\lim_{x \to \pi} \frac{\sin x}{x - \pi} .\]
\[\lim_{x \to 0} \frac{x}{\tan x} is\]
\[\lim_{x \to 3} \frac{x - 3}{\left| x - 3 \right|},\] is equal to
\[\lim_{x \to \infty} \frac{\sqrt{x^2 - 1}}{2x + 1}\]
\[\lim_{x \to 3} \frac{\sum^n_{r = 1} x^r - \sum^n_{r = 1} 3^r}{x - 3}\]is real to
\[\lim_{n \to \infty} \frac{1 - 2 + 3 - 4 + 5 - 6 + . . . . + \left( 2n - 1 \right) - 2n}{\sqrt{n^2 + 1} + \sqrt{n^2 - 1}}\] is equal to
If \[f\left( x \right) = \left\{ \begin{array}{l}x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0\end{array}, \right.\] then \[\lim_{x \to 0} f\left( x \right)\] equals
The value of \[\lim_{x \to 0} \frac{1 - \cos x + 2 \sin x - \sin^3 x - x^2 + 3 x^4}{\tan^3 x - 6 \sin^2 x + x - 5 x^3}\] is
Evaluate the following limits: `lim_(x -> 2)[(x^(-3) - 2^(-3))/(x - 2)]`
if `lim_(x -> 2) (x^"n"- 2^"n")/(x - 2)` = 80 then find the value of n.
Which of the following function is not continuous at x = 0?
Evaluate: `lim_(x -> 1) ((1 + x)^6 - 1)/((1 + x)^2 - 1)`
If `lim_(x -> 1) (x^4 - 1)/(x - 1) = lim_(x -> k) (x^3 - l^3)/(x^2 - k^2)`, then find the value of k.
Evaluate the following limit :
`lim_(x->3)[sqrt(x+6)/x]`
Evaluate the following limit.
`lim_(x->3)[sqrt(x + 6)/x]`