Advertisements
Advertisements
प्रश्न
Evaluate the following limits: `lim_(x -> 2)[(x^(-3) - 2^(-3))/(x - 2)]`
उत्तर
`lim_(x -> 2)[(x^(-3) - 2^(-3))/(x - 2)]`
= `(-3). (2)^-4 ...[ lim_(x -> "a") (x^"n" - "a"^"n")/(x - "a") = "na"^("n" - 1)]`
= `-3 xx 1/2^4`
= `(-3)/16`
APPEARS IN
संबंधित प्रश्न
If \[\lim_{x \to a} \frac{x^3 - a^3}{x - a} = \lim_{x \to 1} \frac{x^4 - 1}{x - 1},\] find all possible values of a.
\[\lim_{x \to \infty} \frac{x}{\sqrt{4 x^2 + 1} - 1}\]
\[\lim_{n \to \infty} \left[ \frac{1^3 + 2^3 + . . . . n^3}{n^4} \right]\]
\[\lim_{x \to \infty} \left[ \frac{x^4 + 7 x^3 + 46x + a}{x^4 + 6} \right]\] where a is a non-zero real number.
\[\lim_{x \to - \infty} \left( \sqrt{x^2 - 8x} + x \right)\]
\[\lim_{x \to 0} \frac{\cos ax - \cos bx}{\cos cx - \cos dx}\]
\[\lim_{x \to 0} \frac{3 \sin 2x + 2x}{3x + 2 \tan 3x}\]
\[\lim_{x \to 0} \frac{\sin^2 4 x^2}{x^4}\]
\[\lim_{x \to 0} \frac{\sin 3x - \sin x}{\sin x}\]
\[\lim_{x \to 0} \frac{\tan 3x - 2x}{3x - \sin^2 x}\]
\[\lim_{x \to 0} \frac{\tan x - \sin x}{\sin 3x - 3 \sin x}\]
\[\lim_{x \to 0} \frac{1 - \cos 2x}{3 \tan^2 x}\]
\[\lim_\theta \to 0 \frac{\sin 4\theta}{\tan 3\theta}\]
\[\lim_{x \to \frac{\pi}{2}} \frac{\cos^2 x}{1 - \sin x}\]
\[\lim_{x \to 1} \left( 1 - x \right) \tan \left( \frac{\pi x}{2} \right)\]
\[\lim_{x \to 0} \frac{\sin 2x}{e^x - 1}\]
\[\lim_{x \to \infty} \frac{\sin x}{x} .\]
Write the value of \[\lim_{x \to 2} \frac{\left| x - 2 \right|}{x - 2} .\]
\[\lim_{x \to 0} \frac{x}{\tan x} is\]
Evaluate the following limits: `lim_(x -> 0)[((1 - x)^8 - 1)/((1 - x)^2 - 1)]`