Advertisements
Advertisements
प्रश्न
\[\lim_{x \to \infty} \frac{x}{\sqrt{4 x^2 + 1} - 1}\]
उत्तर
\[\lim_{x \to \infty} \left[ \frac{x}{\sqrt{4 x^2 + 1} - 1} \right]\]
\[\text{ Rationalising the denominator }: \]
\[ \lim_{x \to \infty} \left[ \frac{x}{\left( \sqrt{4 x^2 + 1} - 1 \right)} \frac{\left( \sqrt{4 x^2 + 1} + 1 \right)}{\left( \sqrt{4 x^2 + 1} + 1 \right)} \right]\]
\[ = \lim_{x \to \infty} \left[ \frac{x\left( \sqrt{4 x^2 + 1} + 1 \right)}{4 x^2 + 1 - 1} \right]\]
\[ = \lim_{x \to \infty} \left[ \frac{\sqrt{4 x^2 + 1} + 1}{4x} \right]\]
\[\text{ Dividing the numerator and the denominator by } x: \]
\[ \lim_{x \to \infty} \left[ \frac{\frac{\sqrt{4 x^2 + 1}}{x} + \frac{1}{x}}{4} \right]\]
\[ = \lim_{x \to \infty} \left[ \frac{\sqrt{\frac{4 x^2 + 1}{x^2}} + \frac{1}{x}}{4} \right]\]
\[ = \lim_{x \to \infty} \left[ \frac{\sqrt{4 + \frac{1}{x^2}} + \frac{1}{x}}{4} \right]\]
\[ x \to \infty \]
\[ \therefore \frac{1}{x}, \frac{1}{x^2} \to 0\]
\[ = \frac{\sqrt{4}}{4}\]
\[ = \frac{2}{4}\]
\[ = \frac{1}{2}\]
APPEARS IN
संबंधित प्रश्न
\[\lim_{x \to 1} \frac{x^2 + 1}{x + 1}\]
\[\lim_{x \to 3} \frac{\sqrt{2x + 3}}{x + 3}\]
\[\lim_{x \to 3} \frac{x^2 - 9}{x + 2}\]
\[\lim_{x \to - 5} \frac{2 x^2 + 9x - 5}{x + 5}\]
\[\lim_{x \to - 1/2} \frac{8 x^3 + 1}{2x + 1}\]
\[\lim_{x \to a} \frac{\left( x + 2 \right)^{5/2} - \left( a + 2 \right)^{5/2}}{x - a}\]
\[\lim_{x \to 0} \frac{\left( 1 + x \right)^6 - 1}{\left( 1 + x \right)^2 - 1}\]
\[\lim_{x \to 1} \frac{x^{15} - 1}{x^{10} - 1}\]
\[\lim_{x \to \infty} \left[ \left\{ \sqrt{x + 1} - \sqrt{x} \right\} \sqrt{x + 2} \right]\]
\[\lim_{n \to \infty} \left[ \frac{1^2 + 2^2 + . . . + n^2}{n^3} \right]\]
Evaluate: \[\lim_{n \to \infty} \frac{1 . 2 + 2 . 3 + 3 . 4 + . . . + n\left( n + 1 \right)}{n^3}\]
\[\lim_{x \to 0} \frac{\sin^2 4 x^2}{x^4}\]
\[\lim_{h \to 0} \frac{\left( a + h \right)^2 \sin \left( a + h \right) - a^2 \sin a}{h}\]
\[\lim_{x \to 0} \frac{\sec 5x - \sec 3x}{\sec 3x - \sec x}\]
\[\lim_{x \to 0} \frac{\sin \left( a + x \right) + \sin \left( a - x \right) - 2 \sin a}{x \sin x}\]
\[\lim_{x \to 0} \frac{2 \sin x^\circ - \sin 2 x^\circ}{x^3}\]
\[\lim_\theta \to 0 \frac{1 - \cos 4\theta}{1 - \cos 6\theta}\]
\[\lim_{x \to a} \frac{\cos x - \cos a}{x - a}\]
\[\lim_{x \to 1} \frac{1 + \cos \pi x}{\left( 1 - x \right)^2}\]
\[\lim_{x \to \pi} \frac{\sqrt{2 + \cos x} - 1}{\left( \pi - x \right)^2}\]
\[\lim_{x \to 0} \frac{\sin 2x}{e^x - 1}\]
\[\lim_{x \to 0^+} \left\{ 1 + \tan^2 \sqrt{x} \right\}^{1/2x}\]
\[\lim_{x \to 0} \left( \cos x \right)^{1/\sin x}\]
Write the value of \[\lim_{x \to 0^+} \left[ x \right] .\]
If \[f\left( x \right) = x \sin \left( 1/x \right), x \neq 0,\] then \[\lim_{x \to 0} f\left( x \right) =\]
\[\lim_{x \to 0} \frac{x}{\tan x} is\]
\[\lim_{x \to a} \frac{x^n - a^n}{x - a}\] is equal at
The value of \[\lim_{x \to \infty} \frac{\sqrt{1 + x^4} + \left( 1 + x^2 \right)}{x^2}\] is
\[\lim_{x \to \pi/4} \frac{4\sqrt{2} - \left( \cos x + \sin x \right)^5}{1 - \sin 2x}\] is equal to
\[\lim_{x \to \infty} a^x \sin \left( \frac{b}{a^x} \right), a, b > 1\] is equal to
\[\lim_{x \to 0} \frac{8}{x^8}\left\{ 1 - \cos \frac{x^2}{2} - \cos \frac{x^2}{4} + \cos \frac{x^2}{2} \cos \frac{x^2}{4} \right\}\] is equal to
The value of \[\lim_{x \to 0} \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}\]
The value of \[\lim_{x \to \pi/2} \left( \sec x - \tan x \right)\]is
Evaluate the following limits: `lim_(x -> 0)[((1 - x)^8 - 1)/((1 - x)^2 - 1)]`
Evaluate the following limits: `lim_(x -> "a")[((z + 2)^(3/2) - ("a" + 2)^(3/2))/(z - "a")]`
Evaluate the following Limit:
`lim_(x -> 0) ((1 + x)^"n" - 1)/x`
Which of the following function is not continuous at x = 0?
`1/(ax^2 + bx + c)`
Evaluate the following limit.
`lim_(x->3)[sqrt(x + 6)/x]`