Advertisements
Advertisements
प्रश्न
\[\lim_{x \to 3} \frac{x^2 - 9}{x + 2}\]
उत्तर
\[\lim_{x \to 3} \left( \frac{x^2 - 9}{x + 2} \right)\]
\[ = \frac{3^2 - 9}{3 + 2}\]
\[ = \frac{9 - 9}{5}\]
\[ = 0\]
APPEARS IN
संबंधित प्रश्न
\[\lim_{x \to 0} \frac{x^{2/3} - 9}{x - 27}\]
\[\lim_{x \to - 1}{\left( 4 x^2 + 2 \right)}\]
\[\lim_{x \to \sqrt{3}} \frac{x^4 - 9}{x^2 + 4\sqrt{3}x - 15}\]
\[\lim_{x \to 1} \left( \frac{1}{x^2 + x - 2} - \frac{x}{x^3 - 1} \right)\]
\[\lim_{x \to 2} \left( \frac{1}{x - 2} - \frac{2}{x^2 - 2x} \right)\]
\[\lim_{x \to - 2} \frac{x^3 + x^2 + 4x + 12}{x^3 - 3x + 2}\]
\[\lim_{x \to a} \frac{x^{5/7} - a^{5/7}}{x^{2/7} - a^{2/7}}\]
\[\lim_{x \to a} \frac{x^{2/3} - a^{2/3}}{x^{3/4} - a^{3/4}}\]
\[\lim_{x \to \infty} \sqrt{x + 1} - \sqrt{x}\]
\[\lim_{x \to \infty} \frac{x}{\sqrt{4 x^2 + 1} - 1}\]
\[\lim_{n \to \infty} \frac{n^2}{1 + 2 + 3 + . . . + n}\]
\[\lim_{x \to \infty} \frac{3 x^{- 1} + 4 x^{- 2}}{5 x^{- 1} + 6 x^{- 2}}\]
\[\lim_{x \to 0} \frac{x^2}{\sin x^2}\]
\[\lim_{x \to 0} \frac{3 \sin 2x + 2x}{3x + 2 \tan 3x}\]
\[\lim_{x \to 0} \frac{\cos 3x - \cos 7x}{x^2}\]
\[\lim_{x \to 0} \frac{2x - \sin x}{\tan x + x}\]
\[\lim_{x \to 0} \frac{\sin 5x - \sin 3x}{\sin x}\]
\[\lim_{x \to 0} \frac{x^3 \cot x}{1 - \cos x}\]
\[\lim_{x \to 0} \frac{3 \sin^2 x - 2 \sin x^2}{3 x^2}\]
\[\lim_{x \to 0} \frac{\sin ax + bx}{ax + \sin bx}\]
If \[\lim_{x \to 0} kx cosec x = \lim_{x \to 0} x cosec kx,\]
\[\lim_{x \to \frac{\pi}{2}} \frac{\cos^2 x}{1 - \sin x}\]
\[\lim_{x \to 1} \frac{1 - x^2}{\sin 2\pi x}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} - \cos x - \sin x}{\left( 4x - \pi \right)^2}\]
\[\lim_{x \to \pi} \frac{\sin x}{x - \pi} .\]
Write the value of \[\lim_{x \to \pi} \frac{\sin x}{x - \pi} .\]
The value of \[\lim_{x \to \infty} \frac{\sqrt{1 + x^4} + \left( 1 + x^2 \right)}{x^2}\] is
\[\lim_{x \to \pi/3} \frac{\sin \left( \frac{\pi}{3} - x \right)}{2 \cos x - 1}\] is equal to
\[\lim_{x \to \pi/4} \frac{4\sqrt{2} - \left( \cos x + \sin x \right)^5}{1 - \sin 2x}\] is equal to
\[\lim_{x \to 2} \frac{\sqrt{1 + \sqrt{2 + x} - \sqrt{3}}}{x - 2}\] is equal to
The value of \[\lim_{x \to \pi/2} \left( \sec x - \tan x \right)\]is
The value of \[\lim_{n \to \infty} \frac{\left( n + 2 \right)! + \left( n + 1 \right)!}{\left( n + 2 \right)! - \left( n + 1 \right)!}\] is
If \[f\left( x \right) = \begin{cases}\frac{\sin\left[ x \right]}{\left[ x \right]}, & \left[ x \right] \neq 0 \\ 0, & \left[ x \right] = 0\end{cases}\] where denotes the greatest integer function, then \[\lim_{x \to 0} f\left( x \right)\]
if `lim_(x -> 2) (x^"n"- 2^"n")/(x - 2)` = 80 then find the value of n.
`lim_(x->3) (x^5 - 243)/(x^3 - 27)` = ?
`1/(ax^2 + bx + c)`
If `f(x) = {{:(x + 2",", x ≤ - 1),(cx^2",", x > -1):}`, find 'c' if `lim_(x -> -1) f(x)` exists
Evaluate the following limit:
`lim_(x->3)[(sqrt(x+6))/x]`