मराठी

The Value of Lim N → ∞ ( N + 2 ) ! + ( N + 1 ) ! ( N + 2 ) ! − ( N + 1 ) ! is - Mathematics

Advertisements
Advertisements

प्रश्न

The value of \[\lim_{n \to \infty} \frac{\left( n + 2 \right)! + \left( n + 1 \right)!}{\left( n + 2 \right)! - \left( n + 1 \right)!}\] is 

पर्याय

  •  0 

  • −1 

  •  1 

  • none of these

MCQ

उत्तर

\[\lim_{n \to \infty} \frac{\left( n + 2 \right)! + \left( n + 1 \right)!}{\left( n + 2 \right)! - \left( n + 1 \right)!}\]
\[\text{ Dividing } N^r \text{ & } D^r \text{ by } \left( n + 1 \right)!: \]
\[ \Rightarrow \lim_{n \to \infty} \frac{\frac{\left( n + 2 \right) \left( n + 1 \right)!}{\left( n + 1 \right)!} + 1}{\frac{\left( n + 2 \right) \left( n + 1 \right)!}{\left( n + 1 \right)!} - 1}\]
\[ = \lim_{n \to \infty} \frac{n + 2 + 1}{n + 2 - 1}\]
\[ = \lim_{n \to \infty} \frac{n + 3}{n + 1}\]
\[ = \lim_{n \to \infty} \frac{1 + \frac{3}{n}}{1 + \frac{1}{n}}\]
\[ = 1\] 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 29: Limits - Exercise 29.13 [पृष्ठ ८०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 29 Limits
Exercise 29.13 | Q 36 | पृष्ठ ८०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find `lim_(x -> 5) f(x)`, where f(x)  = |x| - 5


\[\lim_{x \to 2} \frac{x^4 - 16}{x - 2}\] 


\[\lim_{x \to 2} \left( \frac{x}{x - 2} - \frac{4}{x^2 - 2x} \right)\] 


\[\lim_{x \to 4} \frac{x^2 - 16}{\sqrt{x} - 2}\] 


\[\lim_{x \to 1} \frac{x^4 - 3 x^3 + 2}{x^3 - 5 x^2 + 3x + 1}\] 


\[\lim_{x \to 1} \frac{1 - x^{- 1/3}}{1 - x^{- 2/3}}\] 


\[\lim_{x \to a} \frac{\left( x + 2 \right)^{5/2} - \left( a + 2 \right)^{5/2}}{x - a}\] 


\[\lim_{x \to a} \frac{\left( x + 2 \right)^{3/2} - \left( a + 2 \right)^{3/2}}{x -  a}\]


\[\lim_{x \to a} \frac{x^{2/7} - a^{2/7}}{x - a}\] 


\[\lim_{x \to a} \frac{x^{2/3} - a^{2/3}}{x^{3/4} - a^{3/4}}\] 


If \[\lim_{x \to a} \frac{x^9 - a^9}{x - a} = 9,\] find all possible values of a


\[\lim_{x \to \infty} \frac{\left( 3x - 1 \right) \left( 4x - 2 \right)}{\left( x + 8 \right) \left( x - 1 \right)}\] 


\[\lim_{x \to \infty} \frac{5 x^3 - 6}{\sqrt{9 + 4 x^6}}\]


Show that \[\lim_{x \to \infty} \left( \sqrt{x^2 + x + 1} - x \right) \neq \lim_{x \to \infty} \left( \sqrt{x^2 + 1} - x \right)\] 


Evaluate: \[\lim_{n \to \infty} \frac{1 . 2 + 2 . 3 + 3 . 4 + . . . + n\left( n + 1 \right)}{n^3}\] 


\[\lim_{x \to 0} \frac{\sin^2 4 x^2}{x^4}\] 


If  \[\lim_{x \to 0} kx  cosec x = \lim_{x \to 0} x  cosec kx,\] 


\[\lim_{x \to \frac{\pi}{3}} \frac{\sqrt{3} - \tan x}{\pi - 3x}\]


\[\lim_{x \to \frac{\pi}{2}} \frac{\sqrt{2 - \sin x} - 1}{\left( \frac{\pi}{2} - x \right)^2}\] 


\[\lim_{x \to a} \frac{\cos \sqrt{x} - \cos \sqrt{a}}{x - a}\] 


\[\lim_{x \to 1} \frac{1 - x^2}{\sin \pi x}\]


\[\lim_{x \to \frac{\pi}{6}} \frac{\cot^2 x - 3}{cosec x - 2}\]


\[\lim_{x \to \frac{\pi}{4}} \frac{\cos x - \sin x}{\left( \frac{\pi}{4} - x \right) \left( \cos x + \sin x \right)}\]


\[\lim_{x \to 0} \frac{8^x - 2^x}{x}\]


\[\lim_{x \to  } \frac{1 - \cos 2x}{x} is\]


\[\lim_{n \to \infty} \left\{ \frac{1}{1 - n^2} + \frac{2}{1 - n^2} + . . . + \frac{n}{1 - n^2} \right\}\]


The value of \[\lim_{x \to \pi/2} \left( \sec x - \tan x \right)\]is 


The value of \[\lim_{x \to \infty} \frac{\left( x + 1 \right)^{10} + \left( x + 2 \right)^{10} + . . . + \left( x + 100 \right)^{10}}{x^{10} + {10}^{10}}\] is 


\[\lim_{x \to 0} \frac{\left| \sin x \right|}{x}\]


`lim_(x->3) (x^5 - 243)/(x^3 - 27)` = ?


If the value of `lim_(x -> 1) (1 - (1 - x))^"m"/x` is 99, then n = ______.


Evaluate `lim_(h -> 0) ((a + h)^2 sin (a + h) - a^2 sina)/h`


Evaluate the Following limit:

`lim_(x->3)[sqrt(x+6)/x]`


Evaluate the following limit:

`lim_(x->5)[(x^3-125)/(x^5-3125)]`


Evaluate the following limit:

`lim_(x->5)[(x^3-125)/(x^5-3125)]`


Evaluate the following limit:

`lim_(x->7)[((root(3)(x) - root(3)(7))(root(3)(x) + root(3)(7)))/(x - 7)]`


Evaluate the following limit.

`lim_(x->3)[sqrt(x + 6)/x]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×