Advertisements
Advertisements
प्रश्न
Find `lim_(x -> 5) f(x)`, where f(x) = |x| - 5
उत्तर
`f(x) = |x| - 5`
`lim_(x → 5^-) f(x) = lim_(x → 5^-) [|x| - 5]`
= `lim_(h → 0) [|5 - h| - 5]`
= `lim_(h → 0) [5 - h - 5] = lim_(h → 0) (-h) = 0`
= `lim_(x → 5^+) f(x) = lim_(x → 5^+) [|x| - 5] = lim_(h → 0) [|5 + h| - 5]`
= `lim_(h → 0) [5 + h - 5] = lim_(h → 0) h = 0`
∴ `lim_(x → 5^-) f(x) = lim_(x → 5^+) f(x)`
∴ `lim_(x → 5) f(x) = 0`
APPEARS IN
संबंधित प्रश्न
Suppose f(x) = `{(a+bx, x < 1),(4, x = 1),(b-ax, x > 1):}` and if `lim_(x -> 1) f(x) = f(1)` what are possible values of a and b?
\[\lim_{x \to 0} 9\]
\[\lim_{x \to 2} \left( \frac{x}{x - 2} - \frac{4}{x^2 - 2x} \right)\]
\[\lim_{x \to 1/4} \frac{4x - 1}{2\sqrt{x} - 1}\]
\[\lim_{x \to 4} \frac{x^2 - 16}{\sqrt{x} - 2}\]
\[\lim_{x \to 2} \left[ \frac{1}{x - 2} - \frac{2\left( 2x - 3 \right)}{x^3 - 3 x^2 + 2x} \right]\]
\[\lim_{x \to 1} \left\{ \frac{x - 2}{x^2 - x} - \frac{1}{x^3 - 3 x^2 + 2x} \right\}\]
\[\lim_{x \to - 1} \frac{x^3 + 1}{x + 1}\]
\[\lim_{x \to \infty} \frac{\sqrt{x^2 + a^2} - \sqrt{x^2 + b^2}}{\sqrt{x^2 + c^2} - \sqrt{x^2 + d^2}}\]
\[\lim_{x \to \infty} \left[ \sqrt{x}\left\{ \sqrt{x + 1} - \sqrt{x} \right\} \right]\]
\[\lim_{x \to 0} \frac{\tan 8x}{\sin 2x}\]
\[\lim_{x \to 0} \frac{7x \cos x - 3 \sin x}{4x + \tan x}\]
\[\lim_{x \to 0} \frac{\cos ax - \cos bx}{\cos cx - \cos dx}\]
\[\lim_{x \to 0} \frac{1 - \cos mx}{x^2}\]
\[\lim_\theta \to 0 \frac{\sin 3\theta}{\tan 2\theta}\]
\[\lim_{x \to 0} \frac{\sin^2 4 x^2}{x^4}\]
\[\lim_{x \to 0} \frac{2x - \sin x}{\tan x + x}\]
\[\lim_{x \to 0} \frac{\sqrt{2} - \sqrt{1 + \cos x}}{x^2}\]
\[\lim_{x \to 0} \frac{x \tan x}{1 - \cos 2x}\]
\[\lim_\theta \to 0 \frac{\sin 4\theta}{\tan 3\theta}\]
\[\lim_{x \to 0} \frac{5x + 4 \sin 3x}{4 \sin 2x + 7x}\]
\[\lim_{x \to \frac{\pi}{2}} \frac{\cos^2 x}{1 - \sin x}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{\cos x} - \sqrt{\sin x}}{x - \frac{\pi}{4}}\]
\[\lim_{x \to a} \frac{\cos x - \cos a}{\sqrt{x} - \sqrt{a}}\]
\[\lim_{x \to a} \frac{\sin \sqrt{x} - \sin \sqrt{a}}{x - a}\]
\[\lim_{x \to \frac{\pi}{2}} \left( \frac{\pi}{2} - x \right) \tan x\]
Evaluate the following limit:
\[\lim_{x \to \pi} \frac{1 - \sin\frac{x}{2}}{\cos\frac{x}{2}\left( \cos\frac{x}{4} - \sin\frac{x}{4} \right)}\]
\[\lim_{x \to 0} \frac{\log \left( a + x \right) - \log a}{x}\]
\[\lim_{x \to 0} \left( \cos x + a \sin bx \right)^{1/x}\]
Write the value of \[\lim_{x \to 0^+} \left[ x \right] .\]
\[\lim_{x \to \infty} \left\{ \frac{3 x^2 + 1}{4 x^2 - 1} \right\}^\frac{x^3}{1 + x}\]
\[\lim_{x \to \infty} \frac{\sin x}{x} .\]
\[\lim_{x \to 0} \frac{\sin 2x}{x}\]
\[\lim_{x \to } \frac{1 - \cos 2x}{x} is\]
\[\lim_{x \to 0} \frac{x}{\tan x} is\]
\[\lim_{x \to \infty} \frac{\sqrt{x^2 - 1}}{2x + 1}\]
Evaluate the following limit:
`lim_(x -> 3) [sqrt(x + 6)/x]`
`1/(ax^2 + bx + c)`
Evaluate the Following limit:
`lim_ (x -> 3) [sqrt (x + 6)/ x]`