Advertisements
Advertisements
प्रश्न
\[\lim_{x \to 0} \frac{\cos ax - \cos bx}{\cos cx - \cos dx}\]
उत्तर
\[\lim_{x \to 0} \left[ \frac{\cos ax - \cos bx}{\cos cx - \cos dx} \right]\] It is of the form \[\left( \frac{0}{0} \right)\]
\[\Rightarrow \lim_{x \to 0} \left[ \frac{- 2\sin\left( \frac{ax + bx}{2} \right)\sin\left( \frac{ax - bx}{2} \right)}{- 2\sin\left( \frac{cx + dx}{a2} \right)\sin\left( \frac{cx - dx}{2} \right)} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\frac{\sin\left( \frac{ax + bx}{2} \right)}{\left( \frac{ax + b}{x} \right)} \times \left( \frac{ax + bx}{2} \right) \times \frac{\sin\left( \frac{ax - bx}{2} \right)}{\left( \frac{ax - bx}{2} \right)} \times \left( \frac{ax - bx}{2} \right)}{\frac{\sin\left( \frac{cx + dx}{2} \right)}{\left( \frac{cx + dx}{2} \right)} \times \left( \frac{cx + dx}{2} \right) \times \frac{\sin\left( \frac{cx - dx}{2} \right)}{\left( \frac{cx - dx}{2} \right)} \times \left( \frac{cx - dx}{2} \right)} \right]\]
\[ = 1 \times \lim_{x \to 0} \left[ \frac{\left( \frac{ax + bx}{2} \right)\left( \frac{ax - bx}{2} \right)}{\left( \frac{cx + dx}{2} \right)\left( \frac{cx - dx}{2} \right)} \right]\]
\[ = \lim_{x \to 0} \frac{x^2 \left( a + b \right)\left( a - b \right)}{x^2 \left( c + d \right)\left( c - d \right)}\]
\[ = \frac{a^2 - b^2}{c^2 - d^2}\]
APPEARS IN
संबंधित प्रश्न
Suppose f(x) = `{(a+bx, x < 1),(4, x = 1),(b-ax, x > 1):}` and if `lim_(x -> 1) f(x) = f(1)` what are possible values of a and b?
\[\lim_{x \to a} \frac{\sqrt{x} + \sqrt{a}}{x + a}\]
\[\lim_{x \to 5} \frac{x^2 - 9x + 20}{x^2 - 6x + 5}\]
\[\lim_{x \to 2} \left( \frac{1}{x - 2} - \frac{2}{x^2 - 2x} \right)\]
\[\lim_{x \to 3} \left( \frac{1}{x - 3} - \frac{3}{x^2 - 3x} \right)\]
\[\lim_{x \to - 2} \frac{x^3 + x^2 + 4x + 12}{x^3 - 3x + 2}\]
If \[\lim_{x \to a} \frac{x^9 - a^9}{x - a} = 9,\] find all possible values of a.
\[\lim_{n \to \infty} \left[ \frac{1^3 + 2^3 + . . . . n^3}{n^4} \right]\]
\[\lim_{x \to 0} \frac{\sin x^0}{x}\]
\[\lim_{x \to 0} \frac{3 \sin x - 4 \sin^3 x}{x}\]
\[\lim_{x \to 0} \frac{\tan 8x}{\sin 2x}\]
\[\lim_{x \to 0} \frac{\tan mx}{\tan nx}\]
\[\lim_\theta \to 0 \frac{\sin 3\theta}{\tan 2\theta}\]
\[\lim_{x \to 0} \frac{\tan x - \sin x}{\sin 3x - 3 \sin x}\]
\[\lim_{x \to 0} \frac{1 - \cos 2x}{\cos 2x - \cos 8x}\]
\[\lim_{x \to 0} \frac{x \tan x}{1 - \cos x}\]
\[\lim_{x \to 0} \frac{\sin ax + bx}{ax + \sin bx}\]
Evaluate the following limit:
\[\lim_{h \to 0} \frac{\left( a + h \right)^2 \sin\left( a + h \right) - a^2 \sin a}{h}\]
\[\lim_{x \to 1} \frac{1 - x^2}{\sin 2\pi x}\]
\[\lim_{n \to \infty} 2^{n - 1} \sin \left( \frac{a}{2^n} \right)\]
\[\lim_{n \to \infty} \frac{\sin \left( \frac{a}{2^n} \right)}{\sin \left( \frac{b}{2^n} \right)}\]
\[\lim_{x \to 2} \frac{x^2 - x - 2}{x^2 - 2x + \sin \left( x - 2 \right)}\]
\[\lim_{x \to 0} \frac{\sqrt{1 - \cos 2x}}{x} .\]
\[\lim_{x \to } \frac{1 - \cos 2x}{x} is\]
\[\lim_{x \to \infty} \frac{\sin x}{x}\] equals
\[\lim_{x \to 1} \frac{\sin \pi x}{x - 1}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{x}\] is equal to
\[\lim_{x \to 2} \frac{\sqrt{1 + \sqrt{2 + x} - \sqrt{3}}}{x - 2}\] is equal to
The value of \[\lim_{n \to \infty} \left\{ \frac{1 + 2 + 3 + . . . + n}{n + 2} - \frac{n}{2} \right\}\]
\[\lim_{x \to 0} \frac{\left| \sin x \right|}{x}\]
Evaluate: `lim_(x -> 1) ((1 + x)^6 - 1)/((1 + x)^2 - 1)`
If f(x) = `{{:(1 if x "is rational"),(-1 if x "is rational"):}` is continuous on ______.
Evaluate the following limit:
`lim_(x->3)[(sqrt(x+6))/x]`
Evaluate the following limit:
`lim_(x->7)[((root(3)(x)-root(3)(7))(root(3)(x)+root(3)(7)))/(x-7)]`
Evaluate the following limit:
`lim_(x->5)[(x^3-125)/(x^5-3125)]`
Evaluate the following limit:
`\underset{x->3}{lim}[sqrt(x +6)/(x)]`