Advertisements
Advertisements
प्रश्न
\[\lim_{x \to 0} \frac{1 - \cos mx}{x^2}\]
उत्तर
\[\lim_{x \to 0} \left[ \frac{1 - \cos \left( mx \right)}{x^2} \right]\]
\[= \lim_{x \to 0} \left[ \frac{2 \sin^2 \left( \frac{mx}{2} \right)}{x^2} \right] \left[ \because 1 - \cos A = 2 \sin^2 \left( \frac{A}{2} \right) \right]\]
\[ = 2 \lim_{x \to 0} \left[ \frac{\sin \left( \frac{mx}{2} \right)}{\frac{mx}{2}} \times \frac{\sin \left( \frac{mx}{2} \right)}{\frac{mx}{2}} \right] \times \frac{m}{2} \times \frac{m}{2} \]
\[ = 2 \times \frac{m}{2} \times \frac{m}{2} \left[ \because \lim_{x \to 0} \frac{\sin x}{x} = 1 \right]\]
\[ = \frac{m^2}{2}\]
APPEARS IN
संबंधित प्रश्न
\[\lim_{x \to - 5} \frac{2 x^2 + 9x - 5}{x + 5}\]
\[\lim_{x \to - 1/2} \frac{8 x^3 + 1}{2x + 1}\]
\[\lim_{x \to 4} \frac{x^2 - 16}{\sqrt{x} - 2}\]
\[\lim_{x \to 2} \left( \frac{1}{x - 2} - \frac{4}{x^3 - 2 x^2} \right)\]
\[\lim_{x \to 1} \frac{x^4 - 3 x^3 + 2}{x^3 - 5 x^2 + 3x + 1}\]
\[\lim_{x \to 1} \frac{x^3 + 3 x^2 - 6x + 2}{x^3 + 3 x^2 - 3x - 1}\]
\[\lim_{x \to - 1/2} \frac{8 x^3 + 1}{2x + 1}\]
If \[\lim_{x \to a} \frac{x^9 - a^9}{x - a} = \lim_{x \to 5} \left( 4 + x \right),\] find all possible values of a.
\[\lim_{n \to \infty} \left[ \frac{1^3 + 2^3 + . . . . n^3}{n^4} \right]\]
\[\lim_{x \to \infty} \left[ \frac{x^4 + 7 x^3 + 46x + a}{x^4 + 6} \right]\] where a is a non-zero real number.
\[\lim_{x \to 0} \frac{x^2}{\sin x^2}\]
\[\lim_{x \to 0} \frac{2x - \sin x}{\tan x + x}\]
\[\lim_{x \to 0} \frac{x^2 + 1 - \cos x}{x \sin x}\]
\[\lim_{x \to 0} \frac{\cos 2x - 1}{\cos x - 1}\]
\[\lim_{x \to 0} \left( cosec x - \cot x \right)\]
\[\lim_{x \to \pi} \frac{\sin x}{\pi - x}\]
\[\lim_{x \to \pi} \frac{\sqrt{5 + \cos x} - 2}{\left( \pi - x \right)^2}\]
\[\lim_{x \to 1} \frac{1 + \cos \pi x}{\left( 1 - x \right)^2}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{1 - \sqrt{2} \sin x}\]
\[\lim_{x \to \pi} \frac{\sqrt{2 + \cos x} - 1}{\left( \pi - x \right)^2}\]
\[\lim_{x \to \frac{\pi}{6}} \frac{\cot^2 x - 3}{cosec x - 2}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{\cos x - \sin x}{\left( \frac{\pi}{4} - x \right) \left( \cos x + \sin x \right)}\]
\[\lim_{n \to \infty} \left( 1 + \frac{x}{n} \right)^n\]
\[\lim_{x \to \infty} \left\{ \frac{3 x^2 + 1}{4 x^2 - 1} \right\}^\frac{x^3}{1 + x}\]
Write the value of \[\lim_{x \to 1^-} x - \left[ x \right] .\]
Write the value of \[\lim_{x \to 2} \frac{\left| x - 2 \right|}{x - 2} .\]
\[\lim_{n \to \infty} \left\{ \frac{1}{1 - n^2} + \frac{2}{1 - n^2} + . . . + \frac{n}{1 - n^2} \right\}\]
\[\lim_{x \to \infty} \frac{\sin x}{x}\] equals
\[\lim_{x \to \pi/4} \frac{\sqrt{2} \cos x - 1}{\cot x - 1}\] is equal to
The value of \[\lim_{x \to \pi/2} \left( \sec x - \tan x \right)\]is
The value of \[\lim_{n \to \infty} \left\{ \frac{1 + 2 + 3 + . . . + n}{n + 2} - \frac{n}{2} \right\}\]
Evaluate the following limit:
`lim_(x -> 3) [sqrt(x + 6)/x]`
Evaluate the following limit:
`lim_(x -> 7)[((root(3)(x) - root(3)(7))(root(3)(x) + root(3)(7)))/(x - 7)]`
Let `f(x) = {{:((k cos x)/(pi - 2x)",", "when" x ≠ pi/2),(3",", x = pi/2 "and if" f(x) = f(pi/2)):}` find the value of k.
Evaluate the Following limit:
`lim_(x->5) [(x^3 -125)/(x^5-3125)]`
Evaluate the following limit:
`lim_(x->7)[((root(3)(x)-root(3)(7))(root(3)(x)+root(3)(7)))/(x-7)]`
Evaluate the following limit:
`lim_(x->5)[(x^3-125)/(x^5-3125)]`
Evaluate the following limits: `lim_(x -> 5)[(x^3 - 125)/(x^5 - 3125)]`
Evaluate the following limit:
`lim _ (x -> 5) [(x^3 - 125) / (x^5 - 3125)]`