मराठी

Lim X → ∞ [ X 4 + 7 X 3 + 46 X + a X 4 + 6 ] Where a is a Non-zero Real Number. - Mathematics

Advertisements
Advertisements

प्रश्न

limx[x4+7x3+46x+ax4+6] where a is a non-zero real number. 

उत्तर

limx[x4+7x3+46x+ax4+6] Dividing the numerator and the denominator by x4:  

limx[1+7x+46x2+9x41+6x4]
 As x,1x,1x2,1x3,1x40
=11

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 29: Limits - Exercise 29.6 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 29 Limits
Exercise 29.6 | Q 20 | पृष्ठ ३९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Show that limx0x|x| does not exist.


limx32x+3x+3 


limx2(3x) 


limx4x27x+12x23x4 


limx5x29x+20x26x+5 


limx1x3+3x26x+2x3+3x23x1


limx1{x2x2x1x33x2+2x} 


If limxax3a3xa=limx1x41x1, find all possible values of a


limx0sin5xtan3x 


limx0tan23xx2 


limx03sin2x+2x3x+2tan3x 


limx0tan3x2x3xsin2x 


limx0sec5xsec3xsec3xsecx


limx03sinxsin3xx3


Evaluate the following limit: 

limx0sin(α+β)x+sin(αβ)x+sin2αxcos2βxcos2αx


limxπ4f(x)f(π4)xπ4,


limxπ41sin2x1+cos4x 


limxπ1+cosxtan2x 


limxπ4cosxsinx(π4x)(cosx+sinx)


limx0log(3+x)log(3x)x 


Write the value of limx01cos2xx.


Write the value of limx0+[x].


limx0sin[x][x]. 


limn12+22+32+...+n2n3 


limx0sin2xx 


limx1cos2xxis


limxaxnanxa  is equal at 


limxx212x+1 


limn{11.3+13.5+15.7+...+1(2n+1)(2n+3)}is equal to


limn12+34+56+....+(2n1)2nn2+1+n21 is equal to 


limx08x8{1cosx22cosx24+cosx22cosx24} is equal to 


The value of limx0a2ax+x2a2+ax+x2a+xax 


limx|x|x  is equal to 


limx0|sinx|x


Evaluate the following limit:

limx5[x3-125x5-3125]


Evaluate the following limits: if limx1[x4-1x-1]=limxa[x3-a3x-a], find all the value of a.


limx3x5-243x3-27 = ?


If f(x) = {1ifx is rational-1ifx is rational is continuous on ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.