Advertisements
Advertisements
प्रश्न
\[\lim_{n \to \infty} \left\{ \frac{1}{1 . 3} + \frac{1}{3 . 5} + \frac{1}{5 . 7} + . . . + \frac{1}{\left( 2n + 1 \right) \left( 2n + 3 \right)} \right\}\]is equal to
पर्याय
0
1/2
1/9
2
उत्तर
1/2
\[\text{ Here }, T_n = \frac{1}{\left( 2n - 1 \right) \left( 2n + 1 \right)}\]
\[ \Rightarrow T_n = \frac{A}{\left( 2n - 1 \right)} + \frac{B}{\left( 2n + 1 \right)}\]
\[\text{ On equating } A = \frac{1}{2} \text{ and } B = - \frac{1}{2}: \]
\[ T_n = \frac{1}{2\left( 2n - 1 \right)} - \frac{1}{2\left( 2n + 1 \right)}\]
\[ \Rightarrow T_1 = \frac{1}{2}\left[ 1 - \frac{1}{3} \right]\]
\[ \Rightarrow T_2 = \frac{1}{2}\left[ \frac{1}{3} - \frac{1}{5} \right]\]
\[ \Rightarrow T_{n - 1} = \frac{1}{2}\left[ \frac{1}{2n - 1} - \frac{1}{2n - 1} \right]\]
\[ \Rightarrow T_n = \frac{1}{2}\left[ \frac{1}{2n - 1} - \frac{1}{2n + 1} \right]\]
\[ \Rightarrow T_1 + T_2 + T_3 . . . T_n = \frac{1}{2}\left[ 1 - \frac{1}{2n + 1} \right]\]
\[ \Rightarrow T_1 + T_2 + T_3 . . . T_n = \frac{1}{2}\left[ \frac{2n}{2n + 1} \right]\]
\[ \Rightarrow T_1 + T_2 + T_3 . . . T_n = \frac{n}{2n + 1}\]
\[ \therefore \lim_{n \to \infty} \left[ \frac{1}{1 . 3} + \frac{1}{3 . 5} + \frac{1}{5 . 7} . . . \frac{1}{\left( 2n + 1 \right) \left( 2n + 3 \right)} \right]\]
\[ = \lim_{n \to \infty} \left[ \sum^n_{n = 1} \frac{1}{\left( 2n - 1 \right) \left( 2n + 1 \right)} \right]\]
\[ = \lim_{n \to \infty} \left( \frac{n}{2n + 1} \right)\]
\[ = \lim_{n \to \infty} \left( \frac{1}{2 + \frac{1}{n}} \right) \left[ \text{ Dividing } N^r and D^r \text{ by } n \right]\]
\[ = \frac{1}{2}\]
APPEARS IN
संबंधित प्रश्न
Suppose f(x) = `{(a+bx, x < 1),(4, x = 1),(b-ax, x > 1):}` and if `lim_(x -> 1) f(x) = f(1)` what are possible values of a and b?
\[\lim_{x \to \sqrt{2}} \frac{x^2 - 2}{x^2 + \sqrt{2}x - 4}\]
\[\lim_{x \to 2} \left( \frac{1}{x - 2} - \frac{2}{x^2 - 2x} \right)\]
\[\lim_{x \to 3} \left( x^2 - 9 \right) \left[ \frac{1}{x + 3} + \frac{1}{x - 3} \right]\]
\[\lim_{x \to 1} \frac{x^4 - 3 x^3 + 2}{x^3 - 5 x^2 + 3x + 1}\]
\[\lim_{x \to 1} \frac{x^3 + 3 x^2 - 6x + 2}{x^3 + 3 x^2 - 3x - 1}\]
\[\lim_{x \to 27} \frac{\left( x^{1/3} + 3 \right) \left( x^{1/3} - 3 \right)}{x - 27}\]
\[\lim_{x \to \infty} \sqrt{x^2 + 7x - x}\]
\[\lim_{x \to \infty} \frac{3 x^{- 1} + 4 x^{- 2}}{5 x^{- 1} + 6 x^{- 2}}\]
\[\lim_{n \to \infty} \left[ \frac{1^3 + 2^3 + . . . . n^3}{n^4} \right]\]
\[\lim_{x \to 0} \frac{\sin 5x}{\tan 3x}\]
\[\lim_\theta \to 0 \frac{\sin 3\theta}{\tan 2\theta}\]
\[\lim_{h \to 0} \frac{\left( a + h \right)^2 \sin \left( a + h \right) - a^2 \sin a}{h}\]
\[\lim_{x \to 0} \frac{x^3 \cot x}{1 - \cos x}\]
\[\lim_{x \to 0} \frac{3 \sin^2 x - 2 \sin x^2}{3 x^2}\]
\[\lim_{x \to 0} \frac{x \cos x + \sin x}{x^2 + \tan x}\]
Evaluate the following limit:
\[\lim_{h \to 0} \frac{\left( a + h \right)^2 \sin\left( a + h \right) - a^2 \sin a}{h}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} - \cos x - \sin x}{\left( \frac{\pi}{4} - x \right)^2}\]
\[\lim_{x \to \frac{\pi}{8}} \frac{\cot 4x - \cos 4x}{\left( \pi - 8x \right)^3}\]
\[\lim_{x \to 1} \frac{1 - x^2}{\sin \pi x}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{1 - \sin 2x}{1 + \cos 4x}\]
\[\lim_{x \to 1} \frac{1 - \frac{1}{x}}{\sin \pi \left( x - 1 \right)}\]
\[\lim_{x \to 2} \frac{x^2 - x - 2}{x^2 - 2x + \sin \left( x - 2 \right)}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{1 - \sqrt{2} \sin x}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} - \cos x - \sin x}{\left( 4x - \pi \right)^2}\]
\[\lim_{x \to 0} \frac{\log \left( a + x \right) - \log a}{x}\]
\[\lim_{x \to 0} \left( \cos x + a \sin bx \right)^{1/x}\]
Write the value of \[\lim_{x \to \infty} \frac{\sin x}{x} .\]
\[\lim_{x \to } \frac{1 - \cos 2x}{x} is\]
\[\lim_{x \to \infty} \frac{\sin x}{x}\] equals
\[\lim_{x \to a} \frac{x^n - a^n}{x - a}\] is equal at
\[\lim_{x \to \pi/3} \frac{\sin \left( \frac{\pi}{3} - x \right)}{2 \cos x - 1}\] is equal to
\[\lim_{n \to \infty} \frac{n!}{\left( n + 1 \right)! + n!}\] is equal to
\[\lim_{x \to \pi/4} \frac{4\sqrt{2} - \left( \cos x + \sin x \right)^5}{1 - \sin 2x}\] is equal to
If α is a repeated root of ax2 + bx + c = 0, then \[\lim_{x \to \alpha} \frac{\tan \left( a x^2 + bx + c \right)}{\left( x - \alpha \right)^2}\]
\[\lim_\theta \to \pi/2 \frac{1 - \sin \theta}{\left( \pi/2 - \theta \right) \cos \theta}\] is equal to
The value of \[\lim_{n \to \infty} \left\{ \frac{1 + 2 + 3 + . . . + n}{n + 2} - \frac{n}{2} \right\}\]
Evaluate the following limits: `lim_(y -> 1) [(2y - 2)/(root(3)(7 + y) - 2)]`
Evaluate the following limits: `lim_(x -> "a")[((z + 2)^(3/2) - ("a" + 2)^(3/2))/(z - "a")]`