मराठी

Lim θ → π / 2 1 − Sin θ ( π / 2 − θ ) Cos θ is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

\[\lim_\theta \to \pi/2 \frac{1 - \sin \theta}{\left( \pi/2 - \theta \right) \cos \theta}\] is equal to 

पर्याय

  •  1

  • −1 

  • \[\frac{1}{2}\]

  • \[- \frac{1}{2}\] 

MCQ

उत्तर

\[\frac{1}{2}\] 

\[\lim_\theta \to \frac{\pi}{2} \frac{1 - \sin \theta}{\left( \frac{\pi}{2} - \theta \right)\cos \theta}\]
\[ = \lim_{h \to 0} \frac{1 - \cos h}{\left( \frac{\pi}{2} - \left( \frac{\pi}{2} - h \right) \right) \sin h}\]
\[ = \lim_{h \to 0} \frac{2 \sin^2 \frac{h}{2}}{h \sin h}\]
\[ = \lim_{h \to 0} \frac{2 \sin^2 \frac{h}{2}}{\frac{\frac{4 h^2}{4}}{\frac{\sin h}{h}}}\]
\[ = \frac{2}{4}\]
\[ = \frac{1}{2}\]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 29: Limits - Exercise 29.13 [पृष्ठ ८०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 29 Limits
Exercise 29.13 | Q 33 | पृष्ठ ८०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find `lim_(x -> 5) f(x)`, where f(x)  = |x| - 5


\[\lim_{x \to - 5} \frac{2 x^2 + 9x - 5}{x + 5}\] 


\[\lim_{x \to - 1} \frac{x^3 + 1}{x + 1}\] 


\[\lim_{x \to 1} \left( \frac{1}{x^2 + x - 2} - \frac{x}{x^3 - 1} \right)\] 


\[\lim_{x \to 1/4} \frac{4x - 1}{2\sqrt{x} - 1}\] 


\[\lim_{x \to 4} \frac{x^2 - 16}{\sqrt{x} - 2}\] 


\[\lim_{x \to 2} \frac{x^3 + 3 x^2 - 9x - 2}{x^3 - x - 6}\] 


\[\lim_{x \to 1} \frac{1 - x^{- 1/3}}{1 - x^{- 2/3}}\] 


\[\lim_{x \to 1} \frac{\sqrt{x^2 - 1} + \sqrt{x - 1}}{\sqrt{x^2 - 1}}, x > 1\] 


\[\lim_{n \to \infty} \left[ \frac{1 + 2 + 3 . . . . . . n - 1}{n^2} \right]\] 


\[\lim_{x \to \infty} \left[ \sqrt{x}\left\{ \sqrt{x + 1} - \sqrt{x} \right\} \right]\] 


\[\lim_{x \to 0} \frac{\sin x^n}{x^n}\] 


\[\lim_\theta \to 0 \frac{\sin 3\theta}{\tan 2\theta}\] 


\[\lim_{x \to 0} \frac{\sin x^2 \left( 1 - \cos x^2 \right)}{x^6}\] 


\[\lim_{x \to 0} \frac{5 x \cos x + 3 \sin x}{3 x^2 + \tan x}\] 


\[\lim_{x \to 0} \frac{\sin 3x - \sin x}{\sin x}\] 


\[\lim_{x \to 0} \frac{1 - \cos 2x + \tan^2 x}{x \sin x}\] 


\[\lim_{x \to 0} \frac{x \tan x}{1 - \cos x}\]


\[\lim_{x \to 0} \frac{x^2 + 1 - \cos x}{x \sin x}\] 


\[\lim_{x \to 0} \frac{1 - \cos 4x}{x^2}\] 


Evaluate the following limit: 

\[\lim_{x \to 0} \frac{\sin\left( \alpha + \beta \right)x + \sin\left( \alpha - \beta \right)x + \sin2\alpha x}{\cos^2 \beta x - \cos^2 \alpha x}\]


Evaluate the following limits: 

\[\lim_{x \to 0} \frac{\cos ax - \cos bx}{\cos cx - 1}\] 


\[\lim_{x \to a} \frac{\cos \sqrt{x} - \cos \sqrt{a}}{x - a}\] 


\[\lim_{x \to 1} \frac{1 + \cos \pi x}{\left( 1 - x \right)^2}\] 


\[\lim_{x \to 1} \left( 1 - x \right) \tan \left( \frac{\pi x}{2} \right)\]


\[\lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{1 - \sqrt{2} \sin x}\] 


\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} - \cos x - \sin x}{\left( 4x - \pi \right)^2}\]


Evaluate the following limit:

\[\lim_{x \to \pi} \frac{1 - \sin\frac{x}{2}}{\cos\frac{x}{2}\left( \cos\frac{x}{4} - \sin\frac{x}{4} \right)}\]

 


\[\lim_{x \to 0} \frac{8^x - 2^x}{x}\]


\[\lim_{x \to \infty} \left\{ \frac{3 x^2 + 1}{4 x^2 - 1} \right\}^\frac{x^3}{1 + x}\]


\[\lim_{x \to 0} \frac{\sqrt{1 - \cos 2x}}{x} .\]


Write the value of \[\lim_{x \to 0^+} \left[ x \right] .\]


\[\lim_{x \to 0^-} \frac{\sin x}{\sqrt{x}} .\] 


\[\lim_{n \to \infty} \left\{ \frac{1}{1 - n^2} + \frac{2}{1 - n^2} + . . . + \frac{n}{1 - n^2} \right\}\]


\[\lim_{x \to 3} \frac{\sum^n_{r = 1} x^r - \sum^n_{r = 1} 3^r}{x - 3}\]is real to


\[\lim_{x \to \infty} \frac{\left| x \right|}{x}\]  is equal to 


Evaluate the following limit:

`lim_(x -> 5)[(x^3 - 125)/(x^5 - 3125)]`


Evaluate the following limits: `lim_(y -> 1) [(2y - 2)/(root(3)(7 + y) - 2)]`


Which of the following function is not continuous at x = 0?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×