Advertisements
Advertisements
प्रश्न
\[\lim_{x \to 1} \left( 1 - x \right) \tan \left( \frac{\pi x}{2} \right)\]
उत्तर
\[\lim_{x \to 1} \left( 1 - x \right) \tan\frac{\pi x}{2}\]
\[ = \lim_{h \to 0} \left\{ 1 - \left( 1 - h \right) \right\} \tan \frac{\pi}{2} \left( 1 - h \right)\]
\[ = \lim_{h \to 0} h \tan \left( \frac{\pi}{2} - \frac{\pi h}{2} \right)\]
\[ = \lim_{h \to 0} h \cot \frac{\pi h}{2}\]
\[ = \lim_{h \to 0} \frac{h}{\tan \frac{\pi h}{2}}\]
\[ = \lim_{h \to 0} \frac{1}{\frac{\tan\frac{\pi h}{2} \times \frac{\pi}{2}}{\frac{\pi h}{2}}}\]
\[ = \frac{1}{\frac{\pi}{2}} \left[ \because \lim_{h \to 0} \tan \frac{h}{h} = 1 \right]\]
\[ = \frac{2}{\pi}\]
APPEARS IN
संबंधित प्रश्न
\[\lim_{x \to 1} \frac{x^2 + 1}{x + 1}\]
\[\lim_{x \to 1} \frac{\sqrt{x + 8}}{\sqrt{x}}\]
\[\lim_{x \to 0} \frac{x^{2/3} - 9}{x - 27}\]
\[\lim_{x \to - 1}{\left( 4 x^2 + 2 \right)}\]
\[\lim_{x \to 3} \frac{x^2 - 9}{x + 2}\]
If \[\lim_{x \to 3} \frac{x^n - 3^n}{x - 3} = 108,\] find the value of n.
\[\lim_{x \to \infty} \frac{\sqrt{x^2 + a^2} - \sqrt{x^2 + b^2}}{\sqrt{x^2 + c^2} - \sqrt{x^2 + d^2}}\]
\[\lim_{n \to \infty} \left[ \frac{1^3 + 2^3 + . . . . n^3}{n^4} \right]\]
Evaluate: \[\lim_{n \to \infty} \frac{1 . 2 + 2 . 3 + 3 . 4 + . . . + n\left( n + 1 \right)}{n^3}\]
\[\lim_{x \to 0} \frac{\sin x \cos x}{3x}\]
\[\lim_{x \to 0} \frac{5 x \cos x + 3 \sin x}{3 x^2 + \tan x}\]
\[\lim_{x \to 0} \frac{3 \sin^2 x - 2 \sin x^2}{3 x^2}\]
\[\lim_{x \to 0} \frac{1 - \cos 4x}{x^2}\]
\[\lim_{x \to 0} \frac{1 - \cos 5x}{1 - \cos 6x}\]
\[\lim_{x \to 0} \frac{\sin 3x + 7x}{4x + \sin 2x}\]
\[\lim_{x \to 0} \frac{\sin ax + bx}{ax + \sin bx}\]
Evaluate the following limit:
\[\lim_{x \to 0} \frac{\sin\left( \alpha + \beta \right)x + \sin\left( \alpha - \beta \right)x + \sin2\alpha x}{\cos^2 \beta x - \cos^2 \alpha x}\]
\[\lim_{x \to a} \frac{\cos x - \cos a}{x - a}\]
\[\lim_{x \to \pi} \frac{\sqrt{5 + \cos x} - 2}{\left( \pi - x \right)^2}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} - \cos x - \sin x}{\left( 4x - \pi \right)^2}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{\cos x - \sin x}{\left( \frac{\pi}{4} - x \right) \left( \cos x + \sin x \right)}\]
\[\lim_{x \to \frac{\pi}{6}} \frac{\cot^2 x - 3}{cosec x - 2}\]
\[\lim_{x \to 0} \frac{\sin 2x}{e^x - 1}\]
\[\lim_{x \to 0} \frac{\log \left( a + x \right) - \log a}{x}\]
Write the value of \[\lim_{x \to 1^-} x - \left[ x \right] .\]
Write the value of \[\lim_{x \to 0^-} \left[ x \right] .\]
\[\lim_{x \to \infty} \frac{\sin x}{x} .\]
Write the value of \[\lim_{x \to 2} \frac{\left| x - 2 \right|}{x - 2} .\]
If \[f\left( x \right) = x \sin \left( 1/x \right), x \neq 0,\] then \[\lim_{x \to 0} f\left( x \right) =\]
If \[\lim_{x \to 1} \frac{x + x^2 + x^3 + . . . + x^n - n}{x - 1} = 5050\] then n equal
\[\lim_{x \to 3} \frac{\sum^n_{r = 1} x^r - \sum^n_{r = 1} 3^r}{x - 3}\]is real to
\[\lim_{n \to \infty} \frac{n!}{\left( n + 1 \right)! + n!}\] is equal to
If α is a repeated root of ax2 + bx + c = 0, then \[\lim_{x \to \alpha} \frac{\tan \left( a x^2 + bx + c \right)}{\left( x - \alpha \right)^2}\]
The value of \[\lim_{n \to \infty} \frac{\left( n + 2 \right)! + \left( n + 1 \right)!}{\left( n + 2 \right)! - \left( n + 1 \right)!}\] is
Evaluate the following limit:
`lim_(x -> 7)[((root(3)(x) - root(3)(7))(root(3)(x) + root(3)(7)))/(x - 7)]`
Evaluate the following Limits: `lim_(x -> "a") ((x + 2)^(5/3) - ("a" + 2)^(5/3))/(x - "a")`
`lim_(x->3) (x^5 - 243)/(x^3 - 27)` = ?
If `lim_(x -> 1) (x^4 - 1)/(x - 1) = lim_(x -> k) (x^3 - l^3)/(x^2 - k^2)`, then find the value of k.
Evaluate the following limit.
`lim_(x->5)[(x^3 -125)/(x^5 - 3125)]`