मराठी

Evaluate the following limit: limx→0sin⁡(α+β)x+sin⁡(α−β)x+sin⁡2αxcos2⁡βx−cos2⁡αx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following limit: 

\[\lim_{x \to 0} \frac{\sin\left( \alpha + \beta \right)x + \sin\left( \alpha - \beta \right)x + \sin2\alpha x}{\cos^2 \beta x - \cos^2 \alpha x}\]

बेरीज

उत्तर

\[\lim_{x \to 0} \frac{\sin\left( \alpha + \beta \right)x + \sin\left( \alpha - \beta \right)x + \sin2\alpha x}{\cos^2 \beta x - \cos^2 \alpha x}\]

`therefore cos^2 beta x - cos^2alpha x`

`= cos^2betax - cos^2alphax + cos^2betax * cos^2alphax - cos^2betax * cos^2alphax`

= `cos^2 beta x - cos^2 beta x * cos^2 alpha x - cos^2 alpha x + cos^2 beta x * cos^2 alpha x`

= `cos^2 beta x (1 - cos^2 alpha x) - cos^2 alpha x (1 - cos^2 beta x)`

= `cos^2 beta x * sin^2 alpha x - cos^2 alpha x * sin^2 beta x`

= `(cos beta x * sin alpha x)^2 - (cos alpha x * sin beta x)`

= `(cos beta x * sin alpha x + cos alpha x * sin beta x)(cos beta x * sin alpha x - cos alpha x * sin beta x)`

= `sin (alpha x + beta x)  sin (alphax - betax)`    ...[sin (A ± B) = sin A cos B ± cos A sin B]

= `sin (alpha + beta)x  sin (alpha - beta)x`

`therefore lim_(x->0) (x{sin (alpha + beta )x + sin (alpha - beta)x + sin 2 alpha x})/(sin (alpha + beta)x  sin (alpha - beta) x)`

`lim_(x->0) ((x{sin (alpha + beta )x + sin (alpha - beta)x + sin 2 alpha x})/x^2)/((sin (alpha + beta)x  sin (alpha - beta) x)/x^2)`

`lim_(x->0) ((sin (alpha + beta)x)/x + (sin (alpha - beta)x)/x + (sin 2 alpha x)/x)/((sin (alpha + beta)x)/x xx (sin (alpha - beta)x)/x)`

`lim_(x->0) ((sin (alpha + beta)x)/((alpha + beta) x) xx (alpha + beta) + (sin (alpha - beta)x)/((alpha - beta)x) xx (alpha - beta) + (sin 2 alpha x)/(2alphax) xx 2alpha)/((sin (alpha + beta)x)/((alpha + beta)x) xx (alpha + beta) xx (sin (alpha - beta)x)/((alpha - beta)x) xx (alpha - beta))`

`= (alpha + beta + alpha - beta + 2alpha)/((alpha + beta)(alpha - beta))`

`= (4alpha)/(alpha^2 - beta^2)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 29: Limits - Exercise 29.7 [पृष्ठ ५१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 29 Limits
Exercise 29.7 | Q 60 | पृष्ठ ५१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Suppose f(x)  = `{(a+bx, x < 1),(4, x = 1),(b-ax, x > 1):}`  and if `lim_(x -> 1) f(x) = f(1)` what are possible values of a and b?


\[\lim_{x \to a} \frac{\sqrt{x} + \sqrt{a}}{x + a}\] 


\[\lim_{x \to \sqrt{3}} \frac{x^4 - 9}{x^2 + 4\sqrt{3}x - 15}\]


\[\lim_{x \to 3} \frac{x^2 - x - 6}{x^3 - 3 x^2 + x - 3}\]


\[\lim_{x \to a} \frac{\left( x + 2 \right)^{3/2} - \left( a + 2 \right)^{3/2}}{x -  a}\]


\[\lim_{x \to 1} \frac{x^{15} - 1}{x^{10} - 1}\] 


If \[\lim_{x \to a} \frac{x^9 - a^9}{x - a} = \lim_{x \to 5} \left( 4 + x \right),\] find all possible values of a


\[\lim_{n \to \infty} \frac{n^2}{1 + 2 + 3 + . . . + n}\] 


\[\lim_{n \to \infty} \left[ \frac{\left( n + 2 \right)! + \left( n + 1 \right)!}{\left( n + 2 \right)! - \left( n + 1 \right)!} \right]\] 


\[\lim_{n \to \infty} \left[ \frac{1^3 + 2^3 + . . . . n^3}{n^4} \right]\]


\[\lim_{x \to 0} \frac{\sin x \cos x}{3x}\] 


\[\lim_{x \to 0} \frac{3 \sin 2x + 2x}{3x + 2 \tan 3x}\] 


\[\lim_\theta \to 0 \frac{\sin 3\theta}{\tan 2\theta}\] 


\[\lim_{x \to 0} \frac{2x - \sin x}{\tan x + x}\] 


\[\lim_{h \to 0} \frac{\left( a + h \right)^2 \sin \left( a + h \right) - a^2 \sin a}{h}\] 


\[\lim_{x \to 0} \frac{\sqrt{2} - \sqrt{1 + \cos x}}{x^2}\] 


\[\lim_{x \to 0} \frac{x^3 \cot x}{1 - \cos x}\] 


Evaluate the following limits: 

\[\lim_{x \to 0} \frac{2\sin x - \sin2x}{x^3}\] 

 


\[\lim_{x \to 0} \frac{\sin 3x + 7x}{4x + \sin 2x}\]


\[\lim_{x \to \frac{\pi}{2}} \frac{\cot x}{\frac{\pi}{2} - x}\]


\[\lim_{x \to \pi} \frac{\sqrt{5 + \cos x} - 2}{\left( \pi - x \right)^2}\] 


\[\lim_{x \to a} \frac{\sin \sqrt{x} - \sin \sqrt{a}}{x - a}\] 


\[\lim_{x \to \frac{\pi}{4}} \frac{f\left( x \right) - f\left( \frac{\pi}{4} \right)}{x - \frac{\pi}{4}},\]


\[\lim_{x \to 1} \left( 1 - x \right) \tan \left( \frac{\pi x}{2} \right)\]


\[\lim_{x \to \frac{\pi}{4}} \frac{2 - {cosec}^2 x}{1 - \cot x}\] 


\[\lim_{x \to 0} \frac{\sin 2x}{e^x - 1}\] 


Write the value of \[\lim_{x \to 1^-} x - \left[ x \right] .\] 


Write the value of \[\lim_{x \to \pi} \frac{\sin x}{x - \pi} .\]


\[\lim_{n \to \infty} \frac{1^2 + 2^2 + 3^2 + . . . + n^2}{n^3}\] 


\[\lim_{x \to 0}  \frac{\left( 1 - \cos 2x \right) \sin 5x}{x^2 \sin 3x} =\]


\[\lim_{x \to \pi/3} \frac{\sin \left( \frac{\pi}{3} - x \right)}{2 \cos x - 1}\] is equal to 


\[\lim_{n \to \infty} \frac{n!}{\left( n + 1 \right)! + n!}\]  is equal to


\[\lim_{x \to 0} \frac{8}{x^8}\left\{ 1 - \cos \frac{x^2}{2} - \cos \frac{x^2}{4} + \cos \frac{x^2}{2} \cos \frac{x^2}{4} \right\}\] is equal to 


The value of \[\lim_{x \to \infty} \frac{\left( x + 1 \right)^{10} + \left( x + 2 \right)^{10} + . . . + \left( x + 100 \right)^{10}}{x^{10} + {10}^{10}}\] is 


\[\lim_{x \to \infty} \frac{\left| x \right|}{x}\]  is equal to 


Evaluate the following limit:

`lim_(x -> 3) [sqrt(x + 6)/x]`


Evaluate the following Limit:

`lim_(x -> 0) ((1 + x)^"n" - 1)/x`


`lim_(x->3) (x^5 - 243)/(x^3 - 27)` = ?


Evaluate the following limit :

`lim_(x->7)[[(root3(x)- root3(7))(root3(x) + root3(7)))/(x-7)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×