मराठी

Lim H → 0 ( a + H ) 2 Sin ( a + H ) − a 2 Sin a H - Mathematics

Advertisements
Advertisements

प्रश्न

\[\lim_{h \to 0} \frac{\left( a + h \right)^2 \sin \left( a + h \right) - a^2 \sin a}{h}\] 

उत्तर

\[\lim_{h \to 0} \left[ \frac{\left( a + h \right)^2 \sin \left( a + h \right) - a^2 \sin a}{h} \right]\] 

\[= \lim_{h \to 0} \left[ \frac{a^2 \sin \left( a + h \right) + h^2 \sin \left( a + h \right) + 2ah \sin\left( a + h \right) - a^2 \sin a}{h} \right]\]
\[ = \lim_{h \to 0} \left[ a^2 \left\{ \frac{\sin\left( a + h \right) - \sin\left( a \right)}{h} \right\} + \frac{h^2 \sin\left( a + h \right)}{h} + \frac{2ah \sin\left( a + h \right)}{h} \right]\]
\[\text{ Dividing and multiplying the denominator by } 2:\]
\[ \lim_{h \to 0} \left[ a^2 \left\{ \frac{2\cos\left( \frac{a + h + a}{2} \right) \sin\left( \frac{a + h - a}{2} \right)}{2 \times \frac{h}{2}} \right\} + h\sin\left( a + h \right) + 2a \sin\left( a + h \right) \right]\]
\[ = \lim_{h \to 0} \left[ a^2 \cos \left( \frac{a + h + a}{2} \right) + h \sin \left( a + h \right) + 2a \sin \left( a + h \right) \right]\]
\[ = a^2 \cos a + 0 + 2a \sin a\]
\[ = a^2 \cos a + 2a \sin a\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 29: Limits - Exercise 29.7 [पृष्ठ ५०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 29 Limits
Exercise 29.7 | Q 27 | पृष्ठ ५०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\lim_{x \to 2} \left( 3 - x \right)\] 


\[\lim_{x \to 0} \frac{3x + 1}{x + 3}\] 


\[\lim_{x \to - 1} \frac{x^3 + 1}{x + 1}\] 


\[\lim_{x \to \sqrt{2}} \frac{x^2 - 2}{x^2 + \sqrt{2}x - 4}\]


\[\lim_{x \to 2} \left( \frac{1}{x - 2} - \frac{2}{x^2 - 2x} \right)\] 


\[\lim_{x \to - 2} \frac{x^3 + x^2 + 4x + 12}{x^3 - 3x + 2}\]


\[\lim_{x \to - 1/2} \frac{8 x^3 + 1}{2x + 1}\]


If \[\lim_{x \to a} \frac{x^9 - a^9}{x - a} = \lim_{x \to 5} \left( 4 + x \right),\] find all possible values of a


\[\lim_{x \to \infty} \frac{x}{\sqrt{4 x^2 + 1} - 1}\] 


\[\lim_{x \to \infty} \left[ x\left\{ \sqrt{x^2 + 1} - \sqrt{x^2 - 1} \right\} \right]\] 


\[\lim_{x \to 0} \frac{x^2}{\sin x^2}\] 


\[\lim_{x \to 0} \frac{1 - \cos mx}{x^2}\] 


\[\lim_{x \to 0} \frac{x \cos x + 2 \sin x}{x^2 + \tan x}\] 


\[\lim_{x \to 0} \frac{\sin 3x - \sin x}{\sin x}\] 


\[\lim_{x \to 0} \frac{\sin \left( 3 + x \right) - \sin \left( 3 - x \right)}{x}\] 


\[\lim_\theta \to 0 \frac{\sin 4\theta}{\tan 3\theta}\] 


\[\lim_{x \to \frac{\pi}{2}} \frac{\cos^2 x}{1 - \sin x}\]


\[\lim_{x \to 1} \frac{1 - x^2}{\sin \pi x}\]


\[\lim_{n \to \infty} \frac{\sin \left( \frac{a}{2^n} \right)}{\sin \left( \frac{b}{2^n} \right)}\]


Write the value of \[\lim_{x \to 0} \frac{\sqrt{1 - \cos 2x}}{x} .\]


\[\lim_{x \to \pi} \frac{\sin x}{x - \pi} .\] 


Write the value of \[\lim_{x \to 2} \frac{\left| x - 2 \right|}{x - 2} .\] 


\[\lim_{x \to 0^-} \frac{\sin x}{\sqrt{x}} .\] 


\[\lim_{x \to 0}  \frac{\left( 1 - \cos 2x \right) \sin 5x}{x^2 \sin 3x} =\]


If \[\lim_{x \to 1} \frac{x + x^2 + x^3 + . . . + x^n - n}{x - 1} = 5050\] then n equal


If \[f\left( x \right) = \left\{ \begin{array}{l}x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0\end{array}, \right.\] then \[\lim_{x \to 0} f\left( x \right)\]  equals 


\[\lim_{x \to 0} \frac{8}{x^8}\left\{ 1 - \cos \frac{x^2}{2} - \cos \frac{x^2}{4} + \cos \frac{x^2}{2} \cos \frac{x^2}{4} \right\}\] is equal to 


If α is a repeated root of ax2 + bx + c = 0, then \[\lim_{x \to \alpha} \frac{\tan \left( a x^2 + bx + c \right)}{\left( x - \alpha \right)^2}\]


The value of \[\lim_{x \to \pi/2} \left( \sec x - \tan x \right)\]is 


The value of \[\lim_{n \to \infty} \frac{\left( n + 2 \right)! + \left( n + 1 \right)!}{\left( n + 2 \right)! - \left( n + 1 \right)!}\] is 


The value of \[\lim_{n \to \infty} \left\{ \frac{1 + 2 + 3 + . . . + n}{n + 2} - \frac{n}{2} \right\}\] 


Evaluate the following limits: if `lim_(x -> 5)[(x^"k" - 5^"k")/(x - 5)]` = 500, find all possible values of k.


Which of the following function is not continuous at x = 0?


Evaluate the Following limit:

`lim_(x->5) [(x^3 -125)/(x^5-3125)]`


Evaluate the following limit:

`lim_(x->7)[((root(3)(x)-root(3)(7))(root(3)(x)+root(3)(7)))/(x-7)]`


Evaluate the following limit:

`\underset{x->3}{lim}[sqrt(x +6)/(x)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×