मराठी

Lim X → 0 3 Sin 2 X + 2 X 3 X + 2 Tan 3 X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\lim_{x \to 0} \frac{3 \sin 2x + 2x}{3x + 2 \tan 3x}\] 

उत्तर

\[\lim_{x \to 0} \left[ \frac{3 \sin \left( 2x \right) + 2x}{3x + 2 \tan \left( 3x \right)} \right]\] 

\[= \lim_{x \to 0} \left[ \frac{\frac{3 \sin 2x}{x} + 2}{3 + \frac{2 \tan 3x}{x}} \right]\]
\[ = \frac{3 \lim_{x \to 0} \left( \frac{\sin 2x}{2x} \right) \times 2 + 2}{3 + 2 \lim_{x \to 0} \left( \frac{\tan 3x}{x} \right) \times 3}\]
\[ = \frac{6 + 2}{3 + 6}\]
\[ = \frac{8}{9}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 29: Limits - Exercise 29.7 [पृष्ठ ५०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 29 Limits
Exercise 29.7 | Q 14 | पृष्ठ ५०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\lim_{x \to 1} \frac{1 + \left( x - 1 \right)^2}{1 + x^2}\]


\[\lim_{x \to 0} \frac{x^{2/3} - 9}{x - 27}\]


\[\lim_{x \to 0} 9\] 


\[\lim_{x \to \sqrt{3}} \frac{x^4 - 9}{x^2 + 4\sqrt{3}x - 15}\]


\[\lim_{x \to 2} \left( \frac{x}{x - 2} - \frac{4}{x^2 - 2x} \right)\] 


\[\lim_{x \to 2} \left( \frac{1}{x - 2} - \frac{2}{x^2 - 2x} \right)\] 


\[\lim_{x \to 2} \left[ \frac{1}{x - 2} - \frac{2\left( 2x - 3 \right)}{x^3 - 3 x^2 + 2x} \right]\] 


Evaluate the following limit:

\[\lim_{x \to 1} \frac{x^7 - 2 x^5 + 1}{x^3 - 3 x^2 + 2}\] 


\[\lim_{x \to a} \frac{x^{2/3} - a^{2/3}}{x^{3/4} - a^{3/4}}\] 


If \[\lim_{x \to a} \frac{x^9 - a^9}{x - a} = 9,\] find all possible values of a


\[\lim_{x \to - \infty} \left( \sqrt{4 x^2 - 7x} + 2x \right)\] 


\[\lim_{x \to 0} \frac{\sin x^0}{x}\] 


\[\lim_{x \to 0} \frac{5 x \cos x + 3 \sin x}{3 x^2 + \tan x}\] 


\[\lim_{x \to 0} \frac{\sin \left( 2 + x \right) - \sin \left( 2 - x \right)}{x}\]


\[\lim_{x \to 0} \frac{\sin 2x \left( \cos 3x - \cos x \right)}{x^3}\] 


\[\lim_{x \to 0} \frac{x \cos x + \sin x}{x^2 + \tan x}\] 


Evaluate the following limit: 

\[\lim_{h \to 0} \frac{\left( a + h \right)^2 \sin\left( a + h \right) - a^2 \sin a}{h}\] 


\[\lim_{x \to \frac{\pi}{3}} \frac{\sqrt{3} - \tan x}{\pi - 3x}\]


\[\lim_{x \to \frac{\pi}{2}} \frac{\cot x}{\frac{\pi}{2} - x}\]


\[\lim_{x \to a} \frac{\cos \sqrt{x} - \cos \sqrt{a}}{x - a}\] 


\[\lim_{x \to \frac{\pi}{6}} \frac{\cot^2 x - 3}{cosec x - 2}\]


\[\lim_{x \to 0} \frac{\log \left( a + x \right) - \log a}{x}\]


\[\lim_{x \to 0} \frac{8^x - 2^x}{x}\]


\[\lim_{n \to \infty} \left\{ \frac{1}{1 - n^2} + \frac{2}{1 - n^2} + . . . + \frac{n}{1 - n^2} \right\}\]


\[\lim_{x \to \infty} \frac{\sin x}{x}\] equals 


\[\lim_{x \to 0} \frac{\sin x^0}{x}\] 


\[\lim_{x \to \pi/4} \frac{\sqrt{2} \cos x - 1}{\cot x - 1}\] is equal to


\[\lim 2_{h \to 0} \left\{ \frac{\sqrt{3} \sin \left( \pi/6 + h \right) - \cos \left( \pi/6 + h \right)}{\sqrt{3} h \left( \sqrt{3} \cos h - \sin h \right)} \right\}\] 


\[\lim_{n \to \infty} \left\{ \frac{1}{1 . 3} + \frac{1}{3 . 5} + \frac{1}{5 . 7} + . . . + \frac{1}{\left( 2n + 1 \right) \left( 2n + 3 \right)} \right\}\]is equal to


\[\lim_{x \to 1} \left[ x - 1 \right]\] where [.] is the greatest integer function, is equal to 


If \[f\left( x \right) = \begin{cases}\frac{\sin\left[ x \right]}{\left[ x \right]}, & \left[ x \right] \neq 0 \\ 0, & \left[ x \right] = 0\end{cases}\]  where  denotes the greatest integer function, then \[\lim_{x \to 0} f\left( x \right)\]  


Evaluate the following limits: `lim_(x -> 2)[(x^(-3) - 2^(-3))/(x - 2)]`


Evaluate the following limit:

`lim_(x -> 7)[((root(3)(x) - root(3)(7))(root(3)(x) + root(3)(7)))/(x - 7)]`


Evaluate the following limits: `lim_(x -> 0)[(root(3)(1 + x) - sqrt(1 + x))/x]`


Evaluate: `lim_(x -> 1) ((1 + x)^6 - 1)/((1 + x)^2 - 1)`


Evaluate the following limit:

`lim_(x->3)[(sqrt(x+6))/x]`


Evaluate the following limit:

`\underset{x->5}{lim}[(x^3 - 125)/(x^5 - 3125)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×