Advertisements
Advertisements
प्रश्न
\[\lim_{x \to - \infty} \left( \sqrt{4 x^2 - 7x} + 2x \right)\]
उत्तर १
\[\lim_{x \to - \infty} \left( \sqrt{4 x^2 - 7x} + 2x \right)\]
Let x =\[-\] m When n → – ∞, then m → ∞.
\[ = \lim_{m \to \infty} \left[ \left( \sqrt{4 m^2 = 7m} - 2m \right) \times \frac{\left( \sqrt{4 m^2 + 7m} + 2m \right)}{\left( \sqrt{4 m^2 + 7m} + 2m \right)} \right]\]
\[ = \lim_{m \to \infty} \left[ \frac{\left( 4 m^2 + 7m \right) - \left( 2m \right)^2}{\sqrt{4 m^2 + 7m} + 2m} \right]\]
\[ = \lim_{m \to \infty} \left[ \frac{4 m^2 + 7m - 4 m^2}{\sqrt{4 m^2 + 7m} + 2m} \right]\]
Dividing the numerator and the denominator by m:
\[\lim_{m \to \infty} \left[ \frac{7}{\sqrt{\frac{4 m^2 + 7m}{m^2}} + \frac{2m}{m}} \right]\]
\[ = \lim_{m \to \infty} \left[ \frac{7}{\sqrt{\frac{4 m^2}{m^2} + \frac{7m}{m^2}} + 2} \right]\]
\[ = \lim_{m \to \infty} \left[ \frac{7}{\sqrt{4 + \frac{7}{m}} + 2} \right]\]
\[\text{ As } m \to \infty , \frac{1}{m} \to 0\]
\[ = \frac{7}{\sqrt{4} + 2}\]
\[ = \frac{7}{4}\]
उत्तर २
\[\lim_{x \to - \infty} \left( \sqrt{4 x^2 - 7x} + 2x \right)\]
Let x =\[-\] m When n → – ∞, then m → ∞.
\[ = \lim_{m \to \infty} \left[ \left( \sqrt{4 m^2 = 7m} - 2m \right) \times \frac{\left( \sqrt{4 m^2 + 7m} + 2m \right)}{\left( \sqrt{4 m^2 + 7m} + 2m \right)} \right]\]
\[ = \lim_{m \to \infty} \left[ \frac{\left( 4 m^2 + 7m \right) - \left( 2m \right)^2}{\sqrt{4 m^2 + 7m} + 2m} \right]\]
\[ = \lim_{m \to \infty} \left[ \frac{4 m^2 + 7m - 4 m^2}{\sqrt{4 m^2 + 7m} + 2m} \right]\]
Dividing the numerator and the denominator by m:
\[\lim_{m \to \infty} \left[ \frac{7}{\sqrt{\frac{4 m^2 + 7m}{m^2}} + \frac{2m}{m}} \right]\]
\[ = \lim_{m \to \infty} \left[ \frac{7}{\sqrt{\frac{4 m^2}{m^2} + \frac{7m}{m^2}} + 2} \right]\]
\[ = \lim_{m \to \infty} \left[ \frac{7}{\sqrt{4 + \frac{7}{m}} + 2} \right]\]
\[\text{ As } m \to \infty , \frac{1}{m} \to 0\]
\[ = \frac{7}{\sqrt{4} + 2}\]
\[ = \frac{7}{4}\]
APPEARS IN
संबंधित प्रश्न
Find `lim_(x -> 5) f(x)`, where f(x) = |x| - 5
\[\lim_{x \to 3} \frac{\sqrt{2x + 3}}{x + 3}\]
\[\lim_{x \to 0} \frac{3x + 1}{x + 3}\]
\[\lim_{x \to 3} \frac{x^2 - 4x + 3}{x^2 - 2x - 3}\]
\[\lim_{x \to - 1} \frac{x^3 + 1}{x + 1}\]
\[\lim_{x \to \sqrt{3}} \frac{x^4 - 9}{x^2 + 4\sqrt{3}x - 15}\]
\[\lim_{x \to 1} \left( \frac{1}{x^2 + x - 2} - \frac{x}{x^3 - 1} \right)\]
\[\lim_{x \to 4} \frac{x^2 - 16}{\sqrt{x} - 2}\]
\[\lim_{x \to 3} \left( x^2 - 9 \right) \left[ \frac{1}{x + 3} + \frac{1}{x - 3} \right]\]
\[\lim_{x \to 0} \frac{\left( 1 + x \right)^6 - 1}{\left( 1 + x \right)^2 - 1}\]
If \[\lim_{x \to a} \frac{x^5 - a^5}{x - a} = 405,\]find all possible values of a.
\[\lim_{x \to \infty} \frac{\sqrt{x^2 + a^2} - \sqrt{x^2 + b^2}}{\sqrt{x^2 + c^2} - \sqrt{x^2 + d^2}}\]
\[\lim_{x \to 0} \frac{\sec 5x - \sec 3x}{\sec 3x - \sec x}\]
\[\lim_{x \to 0} \frac{x^2 + 1 - \cos x}{x \sin x}\]
\[\lim_{x \to 0} \frac{\cos 2x - 1}{\cos x - 1}\]
\[\lim_\theta \to 0 \frac{\sin 4\theta}{\tan 3\theta}\]
\[\lim_{x \to 0} \frac{1 - \cos 5x}{1 - \cos 6x}\]
\[\lim_{x \to 0} \frac{\sin ax + bx}{ax + \sin bx}\]
\[\lim_{x \to 0} \left( cosec x - \cot x \right)\]
Evaluate the following limit:
\[\lim_{x \to 0} \frac{\sin\left( \alpha + \beta \right)x + \sin\left( \alpha - \beta \right)x + \sin2\alpha x}{\cos^2 \beta x - \cos^2 \alpha x}\]
If \[\lim_{x \to 0} kx cosec x = \lim_{x \to 0} x cosec kx,\]
\[\lim_{x \to \frac{\pi}{2}} \frac{\cot x}{\frac{\pi}{2} - x}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{\cos x} - \sqrt{\sin x}}{x - \frac{\pi}{4}}\]
\[\lim_{x \to a} \frac{\cos x - \cos a}{\sqrt{x} - \sqrt{a}}\]
\[\lim_{x \to 1} \left( 1 - x \right) \tan \left( \frac{\pi x}{2} \right)\]
\[\lim_{x \to \pi} \frac{\sqrt{2 + \cos x} - 1}{\left( \pi - x \right)^2}\]
Write the value of \[\lim_{x \to 0^-} \left[ x \right] .\]
Write the value of \[\lim_{x \to \pi} \frac{\sin x}{x - \pi} .\]
\[\lim_{n \to \infty} \left\{ \frac{1}{1 . 3} + \frac{1}{3 . 5} + \frac{1}{5 . 7} + . . . + \frac{1}{\left( 2n + 1 \right) \left( 2n + 3 \right)} \right\}\]is equal to
The value of \[\lim_{x \to \infty} \frac{\sqrt{1 + x^4} + \left( 1 + x^2 \right)}{x^2}\] is
\[\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{x}\] is equal to
\[\lim_{n \to \infty} \frac{n!}{\left( n + 1 \right)! + n!}\] is equal to
The value of \[\lim_{x \to \infty} \frac{n!}{\left( n + 1 \right)! - n!}\]
If f(x) = `{{:(1 if x "is rational"),(-1 if x "is rational"):}` is continuous on ______.
Evaluate the following limit:
`lim_(x->3)[(sqrt(x+6))/x]`
Evaluate the following limit:
`lim_(x->7)[((root(3)(x) - root(3)(7))(root(3)(x) + root(3)(7)))/(x - 7)]`
Evaluate the following limit.
`lim_(x->5)[(x^3 -125)/(x^5 - 3125)]`
Evaluate the following limit:
`\underset{x->3}{lim}[sqrt(x +6)/(x)]`
Evaluate the Following limit:
`lim_(x->7)[[(root[3][x] - root[3][7])(root[3][x] + root[3][7])] / (x - 7)]`