हिंदी

Lim X → − ∞ ( √ 4 X 2 − 7 X + 2 X ) - Mathematics

Advertisements
Advertisements

प्रश्न

\[\lim_{x \to - \infty} \left( \sqrt{4 x^2 - 7x} + 2x \right)\] 

उत्तर १

\[\lim_{x \to - \infty} \left( \sqrt{4 x^2 - 7x} + 2x \right)\] 

Let x =\[-\] m When n → – ∞, then m → ∞. 

\[\Rightarrow \lim_{m \to \infty} \left[ \sqrt{4 m^2 + 7m} - 2m \right] \]
\[ = \lim_{m \to \infty} \left[ \left( \sqrt{4 m^2 = 7m} - 2m \right) \times \frac{\left( \sqrt{4 m^2 + 7m} + 2m \right)}{\left( \sqrt{4 m^2 + 7m} + 2m \right)} \right]\]
\[ = \lim_{m \to \infty} \left[ \frac{\left( 4 m^2 + 7m \right) - \left( 2m \right)^2}{\sqrt{4 m^2 + 7m} + 2m} \right]\]
\[ = \lim_{m \to \infty} \left[ \frac{4 m^2 + 7m - 4 m^2}{\sqrt{4 m^2 + 7m} + 2m} \right]\]

Dividing the numerator and the denominator by m:

\[\lim_{m \to \infty} \left[ \frac{7}{\sqrt{\frac{4 m^2 + 7m}{m^2}} + \frac{2m}{m}} \right]\]
\[ = \lim_{m \to \infty} \left[ \frac{7}{\sqrt{\frac{4 m^2}{m^2} + \frac{7m}{m^2}} + 2} \right]\]
\[ = \lim_{m \to \infty} \left[ \frac{7}{\sqrt{4 + \frac{7}{m}} + 2} \right]\]
\[\text{ As } m \to \infty , \frac{1}{m} \to 0\]
\[ = \frac{7}{\sqrt{4} + 2}\]
\[ = \frac{7}{4}\]

 

shaalaa.com

उत्तर २

\[\lim_{x \to - \infty} \left( \sqrt{4 x^2 - 7x} + 2x \right)\] 

Let x =\[-\] m When n → – ∞, then m → ∞. 

\[\Rightarrow \lim_{m \to \infty} \left[ \sqrt{4 m^2 + 7m} - 2m \right] \]
\[ = \lim_{m \to \infty} \left[ \left( \sqrt{4 m^2 = 7m} - 2m \right) \times \frac{\left( \sqrt{4 m^2 + 7m} + 2m \right)}{\left( \sqrt{4 m^2 + 7m} + 2m \right)} \right]\]
\[ = \lim_{m \to \infty} \left[ \frac{\left( 4 m^2 + 7m \right) - \left( 2m \right)^2}{\sqrt{4 m^2 + 7m} + 2m} \right]\]
\[ = \lim_{m \to \infty} \left[ \frac{4 m^2 + 7m - 4 m^2}{\sqrt{4 m^2 + 7m} + 2m} \right]\]

Dividing the numerator and the denominator by m:

\[\lim_{m \to \infty} \left[ \frac{7}{\sqrt{\frac{4 m^2 + 7m}{m^2}} + \frac{2m}{m}} \right]\]
\[ = \lim_{m \to \infty} \left[ \frac{7}{\sqrt{\frac{4 m^2}{m^2} + \frac{7m}{m^2}} + 2} \right]\]
\[ = \lim_{m \to \infty} \left[ \frac{7}{\sqrt{4 + \frac{7}{m}} + 2} \right]\]
\[\text{ As } m \to \infty , \frac{1}{m} \to 0\]
\[ = \frac{7}{\sqrt{4} + 2}\]
\[ = \frac{7}{4}\]

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 29: Limits - Exercise 29.6 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 29 Limits
Exercise 29.6 | Q 23 | पृष्ठ ३९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Show that \[\lim_{x \to 0} \frac{x}{\left| x \right|}\] does not exist.


\[\lim_{x \to 0} \frac{2 x^2 + 3x + 4}{x^2 + 3x + 2}\] 


\[\lim_{x \to 1} \frac{\sqrt{x + 8}}{\sqrt{x}}\] 


\[\lim_{x \to 1} \frac{1 + \left( x - 1 \right)^2}{1 + x^2}\]


\[\lim_{x \to - 1} \frac{x^3 - 3x + 1}{x - 1}\]


\[\lim_{x \to 0} \frac{ax + b}{cx + d}, d \neq 0\]


\[\lim_{x \to - 1/2} \frac{8 x^3 + 1}{2x + 1}\] 


\[\lim_{x \to 1} \frac{\sqrt{x^2 - 1} + \sqrt{x - 1}}{\sqrt{x^2 - 1}}, x > 1\] 


\[\lim_{x \to 4} \frac{x^3 - 64}{x^2 - 16}\] 


If \[\lim_{x \to a} \frac{x^9 - a^9}{x - a} = \lim_{x \to 5} \left( 4 + x \right),\] find all possible values of a


\[\lim_{x \to \infty} \left[ \sqrt{x}\left\{ \sqrt{x + 1} - \sqrt{x} \right\} \right]\] 


\[\lim_{x \to 0} \frac{\sin x^0}{x}\] 


\[\lim_{x \to 0} \frac{x^2}{\sin x^2}\] 


\[\lim_{x \to 0} \frac{\sin x \cos x}{3x}\] 


\[\lim_{x \to 0} \frac{\sin 5x}{\tan 3x}\] 


\[\lim_{x \to 0} \frac{\sin^2 4 x^2}{x^4}\] 


\[\lim_{x \to 0} \frac{x \cos x + 2 \sin x}{x^2 + \tan x}\] 


\[\lim_{h \to 0} \frac{\left( a + h \right)^2 \sin \left( a + h \right) - a^2 \sin a}{h}\] 


\[\lim_{x \to 0} \frac{\sqrt{2} - \sqrt{1 + \cos x}}{x^2}\] 


\[\lim_{x \to 0} \frac{\cos 2x - 1}{\cos x - 1}\] 


\[\lim_{x \to 0} \frac{x \cos x + \sin x}{x^2 + \tan x}\] 


\[\lim_\theta \to 0 \frac{1 - \cos 4\theta}{1 - \cos 6\theta}\] 


\[\lim_{x \to 0} \frac{ax + x \cos x}{b \sin x}\]


\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} - \cos x - \sin x}{\left( \frac{\pi}{4} - x \right)^2}\] 


\[\lim_{x \to \pi} \frac{\sqrt{5 + \cos x} - 2}{\left( \pi - x \right)^2}\] 


\[\lim_{x \to \frac{\pi}{4}} \frac{f\left( x \right) - f\left( \frac{\pi}{4} \right)}{x - \frac{\pi}{4}},\]


\[\lim_{x \to \pi} \frac{\sqrt{2 + \cos x} - 1}{\left( \pi - x \right)^2}\]


\[\lim_{x \to \frac{\pi}{6}} \frac{\cot^2 x - 3}{cosec x - 2}\]


\[\lim_{x \to 0} \left( \cos x \right)^{1/\sin x}\] 


Write the value of \[\lim_{x \to 0^+} \left[ x \right] .\]


If \[f\left( x \right) = x \sin \left( 1/x \right), x \neq 0,\]  then \[\lim_{x \to 0} f\left( x \right) =\] 


\[\lim_{x \to  } \frac{1 - \cos 2x}{x} is\]


\[\lim_{x \to \pi/4} \frac{\sqrt{2} \cos x - 1}{\cot x - 1}\] is equal to


If \[\lim_{x \to 1} \frac{x + x^2 + x^3 + . . . + x^n - n}{x - 1} = 5050\] then n equal


\[\lim_{x \to \pi/3} \frac{\sin \left( \frac{\pi}{3} - x \right)}{2 \cos x - 1}\] is equal to 


\[\lim_{x \to 1} \left[ x - 1 \right]\] where [.] is the greatest integer function, is equal to 


Evaluate the following limits: `lim_(x -> 5)[(x^3 - 125)/(x^5 - 3125)]`


Evaluate the following limit.

`lim_(x->5)[(x^3 -125)/(x^5 - 3125)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×