Advertisements
Advertisements
प्रश्न
\[\lim_{x \to } \frac{1 - \cos 2x}{x} is\]
विकल्प
(a) 0
(b) 1
(c) 2
(d) 4
उत्तर
\[\lim_{x \to 0} \frac{1 - \cos 2x}{x}\]
\[ = \lim_{x \to 0} \frac{2 \sin^2 x}{x}\]
\[ = \lim_{x \to 0} 2x \times \frac{\sin^2 x}{x^2}\]
\[ \Rightarrow 0\]
APPEARS IN
संबंधित प्रश्न
\[\lim_{x \to 3} \frac{x^2 - 4x + 3}{x^2 - 2x - 3}\]
\[\lim_{x \to a} \frac{\left( x + 2 \right)^{5/2} - \left( a + 2 \right)^{5/2}}{x - a}\]
\[\lim_{x \to 0} \frac{\left( 1 + x \right)^6 - 1}{\left( 1 + x \right)^2 - 1}\]
\[\lim_{x \to - 1} \frac{x^3 + 1}{x + 1}\]
If \[\lim_{x \to a} \frac{x^9 - a^9}{x - a} = \lim_{x \to 5} \left( 4 + x \right),\] find all possible values of a.
\[\lim_{x \to \infty} \frac{\sqrt{x^2 + a^2} - \sqrt{x^2 + b^2}}{\sqrt{x^2 + c^2} - \sqrt{x^2 + d^2}}\]
\[\lim_{x \to \infty} \left[ \left\{ \sqrt{x + 1} - \sqrt{x} \right\} \sqrt{x + 2} \right]\]
\[\lim_{n \to \infty} \left[ \frac{1^2 + 2^2 + . . . + n^2}{n^3} \right]\]
\[\lim_{x \to 0} \frac{7x \cos x - 3 \sin x}{4x + \tan x}\]
\[\lim_{x \to 0} \frac{x \tan x}{1 - \cos x}\]
\[\lim_{x \to 0} \frac{\sin 2x \left( \cos 3x - \cos x \right)}{x^3}\]
\[\lim_{x \to 0} \frac{\cos 2x - 1}{\cos x - 1}\]
\[\lim_{x \to 0} \frac{3 \sin^2 x - 2 \sin x^2}{3 x^2}\]
\[\lim_{x \to 0} \frac{x \cos x + \sin x}{x^2 + \tan x}\]
Evaluate the following limits:
\[\lim_{x \to 0} \frac{2\sin x - \sin2x}{x^3}\]
\[\lim_{x \to 0} \frac{1 - \cos 5x}{1 - \cos 6x}\]
\[\lim_{x \to 0} \frac{3 \sin x - \sin 3x}{x^3}\]
\[\lim_{x \to 0} \frac{\tan 2x - \sin 2x}{x^3}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{\cos x} - \sqrt{\sin x}}{x - \frac{\pi}{4}}\]
\[\lim_{x \to 1} \frac{1 + \cos \pi x}{\left( 1 - x \right)^2}\]
\[\lim_{x \to 2} \frac{x^2 - x - 2}{x^2 - 2x + \sin \left( x - 2 \right)}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{{cosec}^2 x - 2}{\cot x - 1}\]
\[\lim_{x \to 0} \frac{\log \left( a + x \right) - \log a}{x}\]
Write the value of \[\lim_{x \to \infty} \frac{\sin x}{x} .\]
\[\lim_{x \to 0} \frac{\sqrt{1 - \cos 2x}}{x} .\]
Write the value of \[\lim_{x \to 2} \frac{\left| x - 2 \right|}{x - 2} .\]
\[\lim_{x \to 0} \frac{\left( 1 - \cos 2x \right) \sin 5x}{x^2 \sin 3x} =\]
\[\lim_{x \to 0} \frac{x}{\tan x} is\]
\[\lim_{x \to \pi/4} \frac{\sqrt{2} \cos x - 1}{\cot x - 1}\] is equal to
\[\lim_{x \to \infty} \frac{\left| x \right|}{x}\] is equal to
\[\lim_{x \to 0} \frac{\left| \sin x \right|}{x}\]
Evaluate the following limits: if `lim_(x -> 1)[(x^4 - 1)/(x - 1)] = lim_(x -> "a") [(x^3 - "a"^3)/(x - "a")]`, find all the value of a.
Evaluate the following limits: `lim_(y -> 1) [(2y - 2)/(root(3)(7 + y) - 2)]`
if `lim_(x -> 2) (x^"n"- 2^"n")/(x - 2)` = 80 then find the value of n.
If the value of `lim_(x -> 1) (1 - (1 - x))^"m"/x` is 99, then n = ______.
If f(x) = `{{:(1 if x "is rational"),(-1 if x "is rational"):}` is continuous on ______.
Evaluate the following limits: `lim_(x ->3) [sqrt(x + 6)/x]`
Evaluate the following limit :
`lim_(x->5)[(x^3-125)/(x^5-3125)]`