Advertisements
Advertisements
प्रश्न
\[\lim_{x \to 1} \frac{1 + \cos \pi x}{\left( 1 - x \right)^2}\]
उत्तर
\[\lim_{x \to 1} \frac{1 + \cos \pi x}{\left( 1 - x \right)^2}\]
\[ = \lim_{h \to 0} \frac{1 + \cos \pi \left( 1 - h \right)}{\left( 1 - \left( 1 - h \right) \right)^2}\]
\[ = \lim_{h \to 0} \frac{1 - \cos \pi h}{h^2}\]
\[ = \lim_{h \to 0} \frac{2 \sin^2 \frac{\pi h}{2}}{\frac{4}{\pi^2}\left( \frac{\pi^2 h^2}{4} \right)}\]
\[ = \lim_{h \to 0} \frac{\sin^2 \frac{\pi h}{2}}{\frac{2}{\pi^2} \left( \frac{\pi h}{2} \right)^2}\]
\[ \Rightarrow \frac{\pi^2}{2}\]
APPEARS IN
संबंधित प्रश्न
Show that \[\lim_{x \to 0} \frac{x}{\left| x \right|}\] does not exist.
\[\lim_{x \to 2} \left( 3 - x \right)\]
\[\lim_{x \to - 1}{\left( 4 x^2 + 2 \right)}\]
\[\lim_{x \to - 1} \frac{x^3 - 3x + 1}{x - 1}\]
\[\lim_{x \to 3} \frac{x^4 - 81}{x^2 - 9}\]
\[\lim_{x \to 4} \frac{x^2 - 7x + 12}{x^2 - 3x - 4}\]
\[\lim_{x \to 5} \frac{x^2 - 9x + 20}{x^2 - 6x + 5}\]
\[\lim_{x \to 1} \frac{x^4 - 3 x^3 + 2}{x^3 - 5 x^2 + 3x + 1}\]
\[\lim_{x \to 3} \frac{x^2 - x - 6}{x^3 - 3 x^2 + x - 3}\]
\[\lim_{x \to 1} \frac{x^3 + 3 x^2 - 6x + 2}{x^3 + 3 x^2 - 3x - 1}\]
\[\lim_{x \to a} \frac{\left( x + 2 \right)^{5/2} - \left( a + 2 \right)^{5/2}}{x - a}\]
\[\lim_{x \to - 1/2} \frac{8 x^3 + 1}{2x + 1}\]
If \[\lim_{x \to 3} \frac{x^n - 3^n}{x - 3} = 108,\] find the value of n.
If \[\lim_{x \to a} \frac{x^3 - a^3}{x - a} = \lim_{x \to 1} \frac{x^4 - 1}{x - 1},\] find all possible values of a.
\[\lim_{x \to \infty} \frac{3 x^3 - 4 x^2 + 6x - 1}{2 x^3 + x^2 - 5x + 7}\]
\[\lim_{n \to \infty} \left[ \frac{1 + 2 + 3 . . . . . . n - 1}{n^2} \right]\]
\[\lim_{n \to \infty} \left[ \frac{1^3 + 2^3 + . . . . n^3}{n^4} \right]\]
\[\lim_{x \to 0} \frac{\sin^2 4 x^2}{x^4}\]
\[\lim_{x \to 0} \frac{x \cos x + 2 \sin x}{x^2 + \tan x}\]
\[\lim_{x \to 0} \frac{\sqrt{2} - \sqrt{1 + \cos x}}{x^2}\]
Evaluate the following limit:
\[\lim_{x \to 0} \frac{\sin\left( \alpha + \beta \right)x + \sin\left( \alpha - \beta \right)x + \sin2\alpha x}{\cos^2 \beta x - \cos^2 \alpha x}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{1 - \sin 2x}{1 + \cos 4x}\]
\[\lim_{x \to - 1} \frac{x^2 - x - 2}{\left( x^2 + x \right) + \sin \left( x + 1 \right)}\]
\[\lim_{x \to \pi} \frac{\sqrt{2 + \cos x} - 1}{\left( \pi - x \right)^2}\]
\[\lim_{x \to \pi} \frac{1 + \cos x}{\tan^2 x}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{{cosec}^2 x - 2}{\cot x - 1}\]
\[\lim_{x \to 0} \frac{\log \left( 3 + x \right) - \log \left( 3 - x \right)}{x}\]
\[\lim_{x \to \infty} \frac{\sin x}{x} .\]
\[\lim_{n \to \infty} \frac{1^2 + 2^2 + 3^2 + . . . + n^2}{n^3}\]
\[\lim_{x \to 1} \left[ x - 1 \right]\] where [.] is the greatest integer function, is equal to
Evaluate the following limits: `lim_(x -> "a")[((z + 2)^(3/2) - ("a" + 2)^(3/2))/(z - "a")]`
`1/(ax^2 + bx + c)`
If `f(x) = {{:(x + 2",", x ≤ - 1),(cx^2",", x > -1):}`, find 'c' if `lim_(x -> -1) f(x)` exists
Evaluate the following limit:
`lim_(x->3)[(sqrt(x+6))/x]`
Evaluate the following limit:
`lim_(x->5)[(x^3-125)/(x^5-3125)]`
Evaluate the Following limit:
`lim_ (x -> 3) [sqrt (x + 6)/ x]`
Evaluate the following limit:
`\underset{x->3}{lim}[sqrt(x +6)/(x)]`