Advertisements
Advertisements
प्रश्न
\[\lim_{x \to 0} \frac{\log \left( 3 + x \right) - \log \left( 3 - x \right)}{x}\]
उत्तर
\[\lim_{x \to 0} \left[ \frac{\log \left( 3 + x \right) - \log \left( 3 - x \right)}{x} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\log \left( \frac{3 + x}{3 - x} \right)}{x} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\log \left( 1 + \frac{3 + x}{3 - x} - 1 \right)}{x} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\log \left( 1 + \frac{3 + x - 3 + x}{3 - x} \right)}{x} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\log \left( 1 + \frac{2x}{3 - x} \right)}{x} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\log \left( 1 + \frac{2x}{3 - x} \right)}{\left( \frac{2x}{3 - x} \right) \times \frac{3 - x}{2}} \right]\]
\[ = \frac{1 \times 2}{3 - 0}\]
\[ = \frac{2}{3}\]
APPEARS IN
संबंधित प्रश्न
Suppose f(x) = `{(a+bx, x < 1),(4, x = 1),(b-ax, x > 1):}` and if `lim_(x -> 1) f(x) = f(1)` what are possible values of a and b?
\[\lim_{x \to 0} \frac{x^{2/3} - 9}{x - 27}\]
\[\lim_{x \to 3} \frac{x^2 - 9}{x + 2}\]
\[\lim_{x \to 3} \frac{x^4 - 81}{x^2 - 9}\]
\[\lim_{x \to 2} \frac{x^3 - 8}{x^2 - 4}\]
\[\lim_{x \to 5} \frac{x^2 - 9x + 20}{x^2 - 6x + 5}\]
\[\lim_{x \to 2} \left( \frac{1}{x - 2} - \frac{2}{x^2 - 2x} \right)\]
\[\lim_{x \to 0} \frac{\left( a + x \right)^2 - a^2}{x}\]
\[\lim_{x \to 1} \left\{ \frac{x - 2}{x^2 - x} - \frac{1}{x^3 - 3 x^2 + 2x} \right\}\]
Evaluate the following limit:
\[\lim_{x \to 1} \frac{x^7 - 2 x^5 + 1}{x^3 - 3 x^2 + 2}\]
If \[\lim_{x \to a} \frac{x^5 - a^5}{x - a} = 405,\]find all possible values of a.
\[\lim_{x \to \infty} \sqrt{x^2 + 7x - x}\]
\[\lim_{x \to \infty} \frac{\sqrt{x^2 + a^2} - \sqrt{x^2 + b^2}}{\sqrt{x^2 + c^2} - \sqrt{x^2 + d^2}}\]
\[\lim_{x \to \infty} \left[ \left\{ \sqrt{x + 1} - \sqrt{x} \right\} \sqrt{x + 2} \right]\]
\[\lim_{n \to \infty} \left[ \frac{1 + 2 + 3 . . . . . . n - 1}{n^2} \right]\]
\[\lim_{x \to 0} \frac{\sin x^0}{x}\]
\[\lim_{x \to 0} \frac{\tan 8x}{\sin 2x}\]
\[\lim_{x \to 0} \frac{\sin 5x}{\tan 3x}\]
\[\lim_{x \to 0} \frac{\cos 3x - \cos 7x}{x^2}\]
\[\lim_{x \to 0} \frac{x \cos x + 2 \sin x}{x^2 + \tan x}\]
\[\lim_{x \to 0} \frac{\sin 5x - \sin 3x}{\sin x}\]
\[\lim_{x \to 0} \frac{\sin 2x \left( \cos 3x - \cos x \right)}{x^3}\]
\[\lim_{x \to 0} \frac{2 \sin x^\circ - \sin 2 x^\circ}{x^3}\]
\[\lim_{x \to 0} \left( cosec x - \cot x \right)\]
\[\lim_{x \to a} \frac{\cos x - \cos a}{x - a}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{\cos x} - \sqrt{\sin x}}{x - \frac{\pi}{4}}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} - \cos x - \sin x}{\left( 4x - \pi \right)^2}\]
\[\lim_{x \to 0} \frac{\sin 2x}{e^x - 1}\]
Write the value of \[\lim_{x \to 0^-} \left[ x \right] .\]
Write the value of \[\lim_{x \to 0^-} \frac{\sin \left[ x \right]}{\left[ x \right]} .\]
\[\lim_{n \to \infty} \left\{ \frac{1}{1 - n^2} + \frac{2}{1 - n^2} + . . . + \frac{n}{1 - n^2} \right\}\]
Evaluate the following limit:
`lim_(x -> 7)[((root(3)(x) - root(3)(7))(root(3)(x) + root(3)(7)))/(x - 7)]`
Evaluate the following limits: if `lim_(x -> 5)[(x^"k" - 5^"k")/(x - 5)]` = 500, find all possible values of k.
If `f(x) = {{:(x + 2",", x ≤ - 1),(cx^2",", x > -1):}`, find 'c' if `lim_(x -> -1) f(x)` exists
Evaluate the following limit:
`lim_(x->5)[(x^3-125)/(x^5-3125)]`
Evaluate the following limit:
`lim _ (x -> 5) [(x^3 - 125) / (x^5 - 3125)]`