Advertisements
Advertisements
प्रश्न
\[\lim_{x \to \infty} \frac{\sqrt{x^2 + a^2} - \sqrt{x^2 + b^2}}{\sqrt{x^2 + c^2} - \sqrt{x^2 + d^2}}\]
उत्तर
\[\lim_{x \to \infty} \left[ \frac{\sqrt{x^2 + a^2} - \sqrt{x^2 + b^2}}{\sqrt{x^2 + c^2} - \sqrt{x^2 + d^2}} \right]\]
\[\text{ Rationalising the numerator and the denominator }:\]
\[ \lim_{x \to \infty} \left[ \frac{\left( \sqrt{x^2 + a^2} - \sqrt{x^2 + b^2} \right)}{\left( \sqrt{x^2 + c^2} - \sqrt{x^2 + d^2} \right)} \times \frac{\left( \sqrt{x^2 + c^2} + \sqrt{x^2 + d^2} \right)}{\left( \sqrt{x^2 + c^2} + \sqrt{x^2 + d^2} \right)} \times \frac{\left( \sqrt{x^2 + a^2} + \sqrt{x^2 + b^2} \right)}{\left( \sqrt{x^2 + a^2} + \sqrt{x^2 + b^2} \right)} \right]\]
\[ = \lim_{x \to \infty} \left[ \frac{\left( \sqrt{x^2 + a^2} - \sqrt{x^2 + b^2} \right) \left( \sqrt{x^2 + a^2} + \sqrt{x^2 + b^2} \right) \left( \sqrt{x^2 + c^2} + \sqrt{x^2 + d^2} \right)}{\left( \sqrt{x^2 + c^2} - \sqrt{x^2 + d^2} \right) \left( \sqrt{x^2 + c^2} + \sqrt{x^2 + d^2} \right) \left( \sqrt{x^2 + a^2} + \sqrt{x^2 + b^2} \right)} \right]\]
\[ = \lim_{x \to \infty} \frac{\left( x^2 + a^2 \right) - \left( x^2 + b^2 \right)}{\left( x^2 + c^2 \right) - \left( x^2 + d^2 \right)} \times \left( \frac{\sqrt{x^2 + c^2} + \sqrt{x^2 + d^2}}{\sqrt{x^2 + a^2} + \sqrt{x^2 + b^2}} \right)\]
\[ {= \lim}_{x \to \infty} \left( \frac{a^2 - b^2}{c^2 - d^2} \right) \left( \frac{\sqrt{x^2 + c^2} + \sqrt{x^2 + d^2}}{\sqrt{x^2 + a^2} + \sqrt{x^2 + b^2}} \right)\]
\[\text{ Dividing the numerator and the denominator byx }:\]
\[ \lim_{x \to \infty} \left( \frac{a^2 - b^2}{c^2 - d^2} \right) \left( \frac{\sqrt{1 + \frac{c^2}{x^2}} + \sqrt{1 + \frac{d^2}{x^2}}}{\sqrt{1 + \frac{1}{x^2}} + \sqrt{1 + \frac{b^2}{x^2}}} \right)\]
\[As x \to \infty , \frac{1}{x}, \frac{1}{x^2} \to 0\]
\[ = \left( \frac{a^2 - b^2}{c^2 - d^2} \right) \left( \frac{\sqrt{1} + \sqrt{1}}{\sqrt{1} + \sqrt{1}} \right)\]
\[ = \frac{a^2 - b^2}{c^2 - d^2}\]
APPEARS IN
संबंधित प्रश्न
\[\lim_{x \to 0} \frac{ax + b}{cx + d}, d \neq 0\]
\[\lim_{x \to 4} \frac{x^2 - 7x + 12}{x^2 - 3x - 4}\]
\[\lim_{x \to 2} \frac{x^4 - 16}{x - 2}\]
\[\lim_{x \to \sqrt{3}} \frac{x^4 - 9}{x^2 + 4\sqrt{3}x - 15}\]
\[\lim_{x \to 2} \left( \frac{x}{x - 2} - \frac{4}{x^2 - 2x} \right)\]
\[\lim_{x \to 2} \left[ \frac{1}{x - 2} - \frac{2\left( 2x - 3 \right)}{x^3 - 3 x^2 + 2x} \right]\]
\[\lim_{x \to a} \frac{\left( x + 2 \right)^{5/2} - \left( a + 2 \right)^{5/2}}{x - a}\]
If \[\lim_{x \to a} \frac{x^9 - a^9}{x - a} = 9,\] find all possible values of a.
\[\lim_{n \to \infty} \frac{n^2}{1 + 2 + 3 + . . . + n}\]
\[\lim_{n \to \infty} \left[ \frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + . . . + \frac{1}{3^n} \right]\]
\[\lim_{x \to \infty} \left[ \frac{x^4 + 7 x^3 + 46x + a}{x^4 + 6} \right]\] where a is a non-zero real number.
\[\lim_{x \to - \infty} \left( \sqrt{4 x^2 - 7x} + 2x \right)\]
\[\lim_{x \to 0} \frac{\sin x^0}{x}\]
\[\lim_{x \to 0} \frac{\sin 3x - \sin x}{\sin x}\]
\[\lim_{x \to 0} \frac{\sin \left( 2 + x \right) - \sin \left( 2 - x \right)}{x}\]
\[\lim_{x \to 0} \frac{x^2 + 1 - \cos x}{x \sin x}\]
Evaluate the following limit:
\[\lim_{x \to 0} \frac{\sin\left( \alpha + \beta \right)x + \sin\left( \alpha - \beta \right)x + \sin2\alpha x}{\cos^2 \beta x - \cos^2 \alpha x}\]
\[\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{\left( \frac{\pi}{2} - x \right)^2}\]
\[\lim_{x \to a} \frac{\cos x - \cos a}{\sqrt{x} - \sqrt{a}}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{f\left( x \right) - f\left( \frac{\pi}{4} \right)}{x - \frac{\pi}{4}},\]
\[\lim_{x \to 1} \frac{1 - \frac{1}{x}}{\sin \pi \left( x - 1 \right)}\]
\[\lim_{x \to \frac{\pi}{6}} \frac{\cot^2 x - 3}{cosec x - 2}\]
\[\lim_{x \to \frac{\pi}{2}} \frac{\left( \frac{\pi}{2} - x \right) \sin x - 2 \cos x}{\left( \frac{\pi}{2} - x \right) + \cot x}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{\cos x - \sin x}{\left( \frac{\pi}{4} - x \right) \left( \cos x + \sin x \right)}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{{cosec}^2 x - 2}{\cot x - 1}\]
\[\lim_{x \to 0} \left( \cos x + \sin x \right)^{1/x}\]
Write the value of \[\lim_{x \to 0^+} \left[ x \right] .\]
\[\lim_{x \to 0} \frac{x}{\tan x} is\]
The value of \[\lim_{x \to \infty} \frac{\sqrt{1 + x^4} + \left( 1 + x^2 \right)}{x^2}\] is
\[\lim_{x \to 2} \frac{\sqrt{1 + \sqrt{2 + x} - \sqrt{3}}}{x - 2}\] is equal to
The value of \[\lim_{x \to 0} \frac{1 - \cos x + 2 \sin x - \sin^3 x - x^2 + 3 x^4}{\tan^3 x - 6 \sin^2 x + x - 5 x^3}\] is
The value of \[\lim_{x \to \pi/2} \left( \sec x - \tan x \right)\]is
\[\lim_{x \to 0} \frac{\left| \sin x \right|}{x}\]
Evaluate the following limits: `lim_(y -> 1) [(2y - 2)/(root(3)(7 + y) - 2)]`
Evaluate the following limits: `lim_(x -> 5)[(x^3 - 125)/(x^2 - 25)]`
Evaluate the following limits: `lim_(x -> 3) [sqrt(x + 6)/x]`
Evaluate the following limit:
`\underset{x->5}{lim}[(x^3 - 125)/(x^5 - 3125)]`