Advertisements
Advertisements
प्रश्न
\[\lim_{x \to 1} \frac{1 - \frac{1}{x}}{\sin \pi \left( x - 1 \right)}\]
उत्तर
\[\lim_{x \to 1} \left[ \frac{1 - \frac{1}{x}}{sin\pi\left( x - 1 \right)} \right]\]
\[ = \lim_{x \to 1} \left[ \frac{x - 1}{xsin\pi\left( x - 1 \right)} \right]\]
Let y = x – 1
If x → 1, then y → 0.
\[= \lim_{y \to 0} \left[ \frac{y}{\left( y + 1 \right)sin\pi y} \right]\]
\[ = \lim_{y \to 0} \left[ \frac{1}{\pi\left( y + 1 \right) \frac{\sin \pi y}{\pi y}} \right]\]
\[ = \frac{1}{\pi\left( 0 + 1 \right) \times 1}\]
\[ = \frac{1}{\pi}\]
APPEARS IN
संबंधित प्रश्न
Find `lim_(x -> 5) f(x)`, where f(x) = |x| - 5
Suppose f(x) = `{(a+bx, x < 1),(4, x = 1),(b-ax, x > 1):}` and if `lim_(x -> 1) f(x) = f(1)` what are possible values of a and b?
\[\lim_{x \to 3} \frac{x^2 - 9}{x + 2}\]
\[\lim_{x \to 2} \frac{x^4 - 16}{x - 2}\]
\[\lim_{x \to 3} \left( \frac{1}{x - 3} - \frac{3}{x^2 - 3x} \right)\]
\[\lim_{x \to a} \frac{\left( x + 2 \right)^{5/2} - \left( a + 2 \right)^{5/2}}{x - a}\]
\[\lim_{x \to 4} \frac{x^3 - 64}{x^2 - 16}\]
\[\lim_{x \to - 1} \frac{x^3 + 1}{x + 1}\]
If \[\lim_{x \to a} \frac{x^9 - a^9}{x - a} = \lim_{x \to 5} \left( 4 + x \right),\] find all possible values of a.
\[\lim_{n \to \infty} \left[ \frac{1^2 + 2^2 + . . . + n^2}{n^3} \right]\]
Show that \[\lim_{x \to \infty} \left( \sqrt{x^2 + x + 1} - x \right) \neq \lim_{x \to \infty} \left( \sqrt{x^2 + 1} - x \right)\]
\[\lim_{x \to 0} \frac{\sin x \cos x}{3x}\]
\[\lim_{x \to 0} \frac{\sec 5x - \sec 3x}{\sec 3x - \sec x}\]
\[\lim_{x \to 0} \frac{1 - \cos 2x}{\cos 2x - \cos 8x}\]
\[\lim_{x \to 0} \frac{x^2 - \tan 2x}{\tan x}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}{x}\]
\[\lim_{x \to 0} \frac{cosec x - \cot x}{x}\]
Evaluate the following limits:
\[\lim_{x \to 0} \frac{\cos ax - \cos bx}{\cos cx - 1}\]
Evaluate the following limit:
\[\lim_{h \to 0} \frac{\left( a + h \right)^2 \sin\left( a + h \right) - a^2 \sin a}{h}\]
Evaluate the following limit:
\[\lim_{x \to \frac{\pi}{3}} \frac{\sqrt{1 - \cos6x}}{\sqrt{2}\left( \frac{\pi}{3} - x \right)}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{x - \frac{\pi}{4}}\]
\[\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{\left( \frac{\pi}{2} - x \right)^2}\]
\[\lim_{x \to \frac{\pi}{2}} \frac{\cot x}{\frac{\pi}{2} - x}\]
\[\lim_{x \to \pi} \frac{\sqrt{2 + \cos x} - 1}{\left( \pi - x \right)^2}\]
\[\lim_{x \to \frac{\pi}{6}} \frac{\cot^2 x - 3}{cosec x - 2}\]
Evaluate the following limit:
\[\lim_{x \to \pi} \frac{1 - \sin\frac{x}{2}}{\cos\frac{x}{2}\left( \cos\frac{x}{4} - \sin\frac{x}{4} \right)}\]
Write the value of \[\lim_{x \to 0} \frac{\sqrt{1 - \cos 2x}}{x} .\]
\[\lim_{x \to } \frac{1 - \cos 2x}{x} is\]
\[\lim_{x \to 0} \frac{x}{\tan x} is\]
\[\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{x}\] is equal to
Evaluate the following limits: if `lim_(x -> 1)[(x^4 - 1)/(x - 1)] = lim_(x -> "a") [(x^3 - "a"^3)/(x - "a")]`, find all the value of a.
`lim_(x->3) (x^5 - 243)/(x^3 - 27)` = ?
If the value of `lim_(x -> 1) (1 - (1 - x))^"m"/x` is 99, then n = ______.
If `f(x) = {{:(x + 2",", x ≤ - 1),(cx^2",", x > -1):}`, find 'c' if `lim_(x -> -1) f(x)` exists
Evaluate the following limits: `lim_(x ->3) [sqrt(x + 6)/x]`
Evaluate the following limit :
`lim_(x->5)[(x^3-125)/(x^5-3125)]`
Evaluate the following limit:
`lim_(x->7)[((root(3)(x)-root(3)(7))(root(3)(x)+root(3)(7)))/(x-7)]`
Evaluate the following limits: `lim_(x -> 5)[(x^3 - 125)/(x^5 - 3125)]`