Advertisements
Advertisements
प्रश्न
\[\lim_{x \to \frac{\pi}{6}} \frac{\cot^2 x - 3}{cosec x - 2}\]
उत्तर
\[ = \lim_{x \to \frac{\pi}{6}} \left[ \frac{{cosec}^2 x - 1 - 3}{cosec x - 2} \right]\]
\[ = \lim_{x \to \frac{\pi}{6}} \left[ \frac{{cosec}^2 x - 4}{cosec x - 2} \right]\]
\[ = \lim_{x \to \frac{\pi}{6}} \left[ \frac{\left( cosec x - 2 \right) \left( cosec x + 2 \right)}{\left( cosec x - 2 \right)} \right]\]
\[ = cosec\frac{\pi}{6} + 2\]
\[ = 4\]
APPEARS IN
संबंधित प्रश्न
\[\lim_{x \to 1} \frac{x^2 + 1}{x + 1}\]
\[\lim_{x \to 0} \frac{2 x^2 + 3x + 4}{x^2 + 3x + 2}\]
\[\lim_{x \to 2} \frac{x^3 - 8}{x^2 - 4}\]
\[\lim_{x \to 4} \frac{x^2 - 7x + 12}{x^2 - 3x - 4}\]
\[\lim_{x \to 2} \frac{x^4 - 16}{x - 2}\]
\[\lim_{x \to 5} \frac{x^2 - 9x + 20}{x^2 - 6x + 5}\]
\[\lim_{x \to 5} \frac{x^3 - 125}{x^2 - 7x + 10}\]
\[\lim_{x \to \sqrt{2}} \frac{x^2 - 2}{x^2 + \sqrt{2}x - 4}\]
\[\lim_{x \to 2} \left( \frac{1}{x - 2} - \frac{4}{x^3 - 2 x^2} \right)\]
\[\lim_{x \to 3} \frac{x^2 - x - 6}{x^3 - 3 x^2 + x - 3}\]
\[\lim_{x \to 1} \left\{ \frac{x - 2}{x^2 - x} - \frac{1}{x^3 - 3 x^2 + 2x} \right\}\]
\[\lim_{x \to 0} \frac{\left( 1 + x \right)^6 - 1}{\left( 1 + x \right)^2 - 1}\]
\[\lim_{x \to - 1} \frac{x^3 + 1}{x + 1}\]
If \[\lim_{x \to a} \frac{x^3 - a^3}{x - a} = \lim_{x \to 1} \frac{x^4 - 1}{x - 1},\] find all possible values of a.
\[\lim_{x \to - \infty} \left( \sqrt{4 x^2 - 7x} + 2x \right)\]
\[\lim_{x \to 0} \frac{2 \sin x^\circ - \sin 2 x^\circ}{x^3}\]
\[\lim_{x \to 0} \frac{\cos 2x - 1}{\cos x - 1}\]
\[\lim_{x \to 0} \frac{\sin 3x + 7x}{4x + \sin 2x}\]
\[\lim_{x \to 0} \frac{3 \sin x - \sin 3x}{x^3}\]
\[\lim_{x \to 0} \frac{\sin ax + bx}{ax + \sin bx}\]
\[\lim_{x \to \pi} \frac{\sqrt{5 + \cos x} - 2}{\left( \pi - x \right)^2}\]
\[\lim_{x \to 1} \frac{1 - x^2}{\sin 2\pi x}\]
\[\lim_{x \to 1} \frac{1 + \cos \pi x}{\left( 1 - x \right)^2}\]
\[\lim_{x \to \pi} \frac{\sqrt{2 + \cos x} - 1}{\left( \pi - x \right)^2}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} - \cos x - \sin x}{\left( 4x - \pi \right)^2}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{{cosec}^2 x - 2}{\cot x - 1}\]
\[\lim_{x \to \pi} \frac{\sqrt{2 + \cos x} - 1}{\left( \pi - x \right)^2}\]
Write the value of \[\lim_{x \to 0^-} \left[ x \right] .\]
Write the value of \[\lim_{x \to \pi} \frac{\sin x}{x - \pi} .\]
\[\lim_{x \to 0} \frac{\sin 2x}{x}\]
\[\lim_{x \to } \frac{1 - \cos 2x}{x} is\]
\[\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{x}\] is equal to
The value of \[\lim_{n \to \infty} \left\{ \frac{1 + 2 + 3 + . . . + n}{n + 2} - \frac{n}{2} \right\}\]
\[\lim_{x \to 1} \left[ x - 1 \right]\] where [.] is the greatest integer function, is equal to
Evaluate the following Limit:
`lim_(x -> 0) ((1 + x)^"n" - 1)/x`
Let `f(x) = {{:((k cos x)/(pi - 2x)",", "when" x ≠ pi/2),(3",", x = pi/2 "and if" f(x) = f(pi/2)):}` find the value of k.
Evaluate the Following limit:
`lim_(x->3)[sqrt(x+6)/x]`
Evaluate the following limit:
`lim_(x->7)[((root(3)(x)-root(3)(7))(root(3)(x)+root(3)(7)))/(x-7)]`
Evaluate the following limit:
`lim_(x->5)[(x^3-125)/(x^5-3125)]`