Advertisements
Advertisements
प्रश्न
\[\lim_{x \to 0} \frac{3 \sin x - \sin 3x}{x^3}\]
उत्तर
\[\lim_{x \to 0} \left[ \frac{3 \sin x - \sin \left( 3x \right)}{x^3} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{3 \sin x - \left( 3 \sin x - 4 \sin^3 x \right)}{x^3} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{4 \sin^3 x}{x^3} \right]\]
\[ = \lim_{x \to 0} \left[ 4 \left( \frac{\sin x}{x} \right)^3 \right]\]
\[ = 4 \times 1 = 4\]
APPEARS IN
संबंधित प्रश्न
\[\lim_{x \to - 1/2} \frac{8 x^3 + 1}{2x + 1}\]
\[\lim_{x \to 5} \frac{x^2 - 9x + 20}{x^2 - 6x + 5}\]
\[\lim_{x \to a} \frac{x^{2/7} - a^{2/7}}{x - a}\]
\[\lim_{x \to a} \frac{x^{2/3} - a^{2/3}}{x^{3/4} - a^{3/4}}\]
If \[\lim_{x \to a} \frac{x^9 - a^9}{x - a} = \lim_{x \to 5} \left( 4 + x \right),\] find all possible values of a.
\[\lim_{x \to \infty} \frac{3 x^3 - 4 x^2 + 6x - 1}{2 x^3 + x^2 - 5x + 7}\]
\[\lim_{x \to \infty} \frac{\sqrt{x^2 + a^2} - \sqrt{x^2 + b^2}}{\sqrt{x^2 + c^2} - \sqrt{x^2 + d^2}}\]
\[\lim_{x \to \infty} \left[ x\left\{ \sqrt{x^2 + 1} - \sqrt{x^2 - 1} \right\} \right]\]
\[\lim_{n \to \infty} \left[ \frac{1^2 + 2^2 + . . . + n^2}{n^3} \right]\]
\[\lim_{x \to \infty} \left[ \sqrt{x}\left\{ \sqrt{x + 1} - \sqrt{x} \right\} \right]\]
\[\lim_{x \to 0} \frac{\tan mx}{\tan nx}\]
\[\lim_{x \to 0} \frac{1 - \cos mx}{x^2}\]
\[\lim_{x \to 0} \frac{\sin^2 4 x^2}{x^4}\]
\[\lim_{x \to 0} \frac{\tan x - \sin x}{\sin 3x - 3 \sin x}\]
\[\lim_{x \to 0} \frac{1 - \cos 2x + \tan^2 x}{x \sin x}\]
\[\lim_{x \to 0} \frac{x^3 \cot x}{1 - \cos x}\]
\[\lim_{x \to 0} \frac{1 - \cos 4x}{x^2}\]
\[\lim_\theta \to 0 \frac{1 - \cos 4\theta}{1 - \cos 6\theta}\]
\[\lim_{x \to 0} \frac{ax + x \cos x}{b \sin x}\]
\[\lim_{x \to 0} \frac{\sin 3x + 7x}{4x + \sin 2x}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{\cos x} - \sqrt{\sin x}}{x - \frac{\pi}{4}}\]
\[\lim_{n \to \infty} \frac{\sin \left( \frac{a}{2^n} \right)}{\sin \left( \frac{b}{2^n} \right)}\]
\[\lim_{x \to \pi} \frac{1 + \cos x}{\tan^2 x}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{{cosec}^2 x - 2}{\cot x - 1}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{2 - {cosec}^2 x}{1 - \cot x}\]
\[\lim_{x \to \pi} \frac{\sqrt{2 + \cos x} - 1}{\left( \pi - x \right)^2}\]
\[\lim_{x \to 0} \frac{\sqrt{1 - \cos 2x}}{x} .\]
Write the value of \[\lim_{x \to 1^-} x - \left[ x \right] .\]
Write the value of \[\lim_{x \to \pi} \frac{\sin x}{x - \pi} .\]
\[\lim_{x \to 0} \frac{\sin x^0}{x}\]
\[\lim_{x \to 3} \frac{x - 3}{\left| x - 3 \right|},\] is equal to
\[\lim_{x \to a} \frac{x^n - a^n}{x - a}\] is equal at
\[\lim_{x \to \infty} a^x \sin \left( \frac{b}{a^x} \right), a, b > 1\] is equal to
\[\lim_\theta \to \pi/2 \frac{1 - \sin \theta}{\left( \pi/2 - \theta \right) \cos \theta}\] is equal to
The value of \[\lim_{x \to \infty} \frac{n!}{\left( n + 1 \right)! - n!}\]
Evaluate the following limit:
`lim_(x -> 3) [sqrt(x + 6)/x]`
Evaluate the following limits: if `lim_(x -> 1)[(x^4 - 1)/(x - 1)] = lim_(x -> "a") [(x^3 - "a"^3)/(x - "a")]`, find all the value of a.
Evaluate the following limits: `lim_(x -> 0)[(root(3)(1 + x) - sqrt(1 + x))/x]`
Evaluate the following limit:
`lim_(x->3)[sqrt(x+6)/x]`