Advertisements
Advertisements
प्रश्न
Evaluate the following limits: `lim_(x -> 0)[(root(3)(1 + x) - sqrt(1 + x))/x]`
उत्तर
`lim_(x -> 0)(root(3)(1 + x) - sqrt(1 + x))/x`
= `lim_(x -> 0)((1 + x)^(1/3) - (1 + x)^(1/2))/x`
Put 1 + x = y
As x → 0, y → 1
∴ `lim_(x -> 0)((1 + x)^(1/3) - (1 + x)^(1/2))/x`
= `lim_(y -> 1)(y^(1/3) - y^(1/2))/(y - 1)`
= `lim_(y -> 1)((y^(1/3) - 1) - (y^(1/2) - 1))/(y - 1)`
= `lim_(y -> 1)((y^(1/3) - 1)/(y - 1) - (y^(1/2) - 1)/(y - 1))`
= `lim_(y -> 1) (y^(1/3) - 1^(1/3))/(y - 1) - lim_(y -> 1)(y^(1/2) - 1^(1/2))/(y - 1)`
= `1/3(1)^((-2)/3) - 1/2(1)^((-1)/2) ...[because lim_(x -> "a") (x^"n" - "a"^"n")/(x - "a") = "na"^("n" - 1)]`
= `1/3 - 1/2`
= `(2 - 3)/6`
= `-1/6`
APPEARS IN
संबंधित प्रश्न
\[\lim_{x \to a} \frac{\sqrt{x} + \sqrt{a}}{x + a}\]
\[\lim_{x \to 1} \left( \frac{1}{x^2 + x - 2} - \frac{x}{x^3 - 1} \right)\]
\[\lim_{x \to 2} \left( \frac{1}{x - 2} - \frac{4}{x^3 - 2 x^2} \right)\]
\[\lim_{x \to \infty} \frac{\left( 3x - 1 \right) \left( 4x - 2 \right)}{\left( x + 8 \right) \left( x - 1 \right)}\]
\[\lim_{x \to \infty} \left[ \left\{ \sqrt{x + 1} - \sqrt{x} \right\} \sqrt{x + 2} \right]\]
\[\lim_{x \to - \infty} \left( \sqrt{x^2 - 8x} + x \right)\]
\[\lim_\theta \to 0 \frac{\sin 3\theta}{\tan 2\theta}\]
\[\lim_{x \to 0} \frac{1 - \cos 2x}{\cos 2x - \cos 8x}\]
\[\lim_{x \to 0} \frac{x^3 \cot x}{1 - \cos x}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}{x}\]
Evaluate the following limit:
\[\lim_{x \to 0} \frac{\sin\left( \alpha + \beta \right)x + \sin\left( \alpha - \beta \right)x + \sin2\alpha x}{\cos^2 \beta x - \cos^2 \alpha x}\]
\[\lim_{n \to \infty} \frac{\sin \left( \frac{a}{2^n} \right)}{\sin \left( \frac{b}{2^n} \right)}\]
Write the value of \[\lim_{x \to 0^+} \left[ x \right] .\]
\[\lim_{x \to 0} \frac{x}{\tan x} is\]
If \[f\left( x \right) = \left\{ \begin{array}{l}x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0\end{array}, \right.\] then \[\lim_{x \to 0} f\left( x \right)\] equals
\[\lim_{x \to 2} \frac{\sqrt{1 + \sqrt{2 + x} - \sqrt{3}}}{x - 2}\] is equal to
\[\lim_{x \to \infty} a^x \sin \left( \frac{b}{a^x} \right), a, b > 1\] is equal to
The value of \[\lim_{x \to 0} \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}\]
If \[f\left( x \right) = \begin{cases}\frac{\sin\left[ x \right]}{\left[ x \right]}, & \left[ x \right] \neq 0 \\ 0, & \left[ x \right] = 0\end{cases}\] where denotes the greatest integer function, then \[\lim_{x \to 0} f\left( x \right)\]
Evaluate the following limits: `lim_(x -> 2)[(x^(-3) - 2^(-3))/(x - 2)]`