हिंदी

Lim X → 0 1 − Cos 2 X Cos 2 X − Cos 8 X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\lim_{x \to 0} \frac{1 - \cos 2x}{\cos 2x - \cos 8x}\]

उत्तर

\[\lim_{x \to 0} \left[ \frac{1 - \cos 2x}{\cos 2x - \cos 8x} \right]\] 

\[= \lim_{x \to 0} \left[ \frac{2 \sin^2 x}{2 \sin\left( \frac{2x + 8x}{2} \right)\sin\left( \frac{8x - 2x}{2} \right)} \right] \left[ \because cosC - cosD = 2\sin\left( \frac{C + D}{2} \right)\sin\left( \frac{D - C}{2} \right) \right]\]
\[ = \lim_{x \to 0} \left[ \frac{2\sin x \times \sin x}{2\sin 5x \times \sin 3x} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\sin x \times \sin x}{\sin 5x \times \sin 3x} \right] \left[ \because \sin\left( - \theta \right) = - \sin\theta \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\frac{\sin x}{x} \times x \times \frac{\sin x}{x} \times x}{\frac{\sin 5x}{5x} \times 5x \times \frac{\sin 3x \times 3x}{3x}} \right]\]
\[ = \frac{1}{15}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 29: Limits - Exercise 29.7 [पृष्ठ ५०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 29 Limits
Exercise 29.7 | Q 30 | पृष्ठ ५०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Show that \[\lim_{x \to 0} \frac{x}{\left| x \right|}\] does not exist.


\[\lim_{x \to 3} \frac{x^2 - 9}{x + 2}\] 


\[\lim_{x \to 2} \frac{x^3 - 8}{x^2 - 4}\] 


\[\lim_{x \to 2} \frac{x^4 - 16}{x - 2}\] 


\[\lim_{x \to 5} \frac{x^2 - 9x + 20}{x^2 - 6x + 5}\] 


\[\lim_{x \to - 1} \frac{x^3 + 1}{x + 1}\] 


\[\lim_{x \to 1} \left( \frac{1}{x^2 + x - 2} - \frac{x}{x^3 - 1} \right)\] 


Evaluate the following limit:

\[\lim_{x \to 1} \frac{x^7 - 2 x^5 + 1}{x^3 - 3 x^2 + 2}\] 


\[\lim_{x \to 27} \frac{\left( x^{1/3} + 3 \right) \left( x^{1/3} - 3 \right)}{x - 27}\] 


If \[\lim_{x \to 3} \frac{x^n - 3^n}{x - 3} = 108,\]  find the value of n


If \[\lim_{x \to a} \frac{x^5 - a^5}{x - a} = 405,\]find all possible values of a

 

 


\[\lim_{x \to \infty} \frac{\sqrt{x^2 + a^2} - \sqrt{x^2 + b^2}}{\sqrt{x^2 + c^2} - \sqrt{x^2 + d^2}}\] 


\[\lim_{n \to \infty} \left[ \frac{\left( n + 2 \right)! + \left( n + 1 \right)!}{\left( n + 2 \right)! - \left( n + 1 \right)!} \right]\] 


\[\lim_{x \to - \infty} \left( \sqrt{4 x^2 - 7x} + 2x \right)\] 


\[\lim_{x \to 0} \frac{\sin x^0}{x}\] 


\[\lim_{x \to 0} \frac{x^2}{\sin x^2}\] 


\[\lim_{x \to 0} \frac{\sin 5x}{\tan 3x}\] 


\[\lim_{x \to 0} \frac{\cos ax - \cos bx}{\cos cx - \cos dx}\] 


\[\lim_{x \to 0} \frac{2x - \sin x}{\tan x + x}\] 


\[\lim_{x \to 0} \frac{x \tan x}{1 - \cos x}\]


\[\lim_{x \to \frac{\pi}{2}} \frac{\cos^2 x}{1 - \sin x}\]


\[\lim_{x \to a} \frac{\cos x - \cos a}{x - a}\] 


\[\lim_{x \to \frac{\pi}{2}} \frac{\cot x}{\frac{\pi}{2} - x}\]


\[\lim_{x \to - 1} \frac{x^2 - x - 2}{\left( x^2 + x \right) + \sin \left( x + 1 \right)}\]


\[\lim_{x \to 1} \left( 1 - x \right) \tan \left( \frac{\pi x}{2} \right)\]


\[\lim_{x \to 0} \frac{\sin 2x}{e^x - 1}\] 


\[\lim_{x \to 0} \left( \cos x + a \sin bx \right)^{1/x}\]


Write the value of \[\lim_{x \to \infty} \frac{\sin x}{x} .\] 


\[\lim_{x \to 0} \frac{\sqrt{1 - \cos 2x}}{x} .\]


\[\lim_{n \to \infty} \frac{1^2 + 2^2 + 3^2 + . . . + n^2}{n^3}\] 


If \[f\left( x \right) = x \sin \left( 1/x \right), x \neq 0,\]  then \[\lim_{x \to 0} f\left( x \right) =\] 


\[\lim_{x \to 0}  \frac{\left( 1 - \cos 2x \right) \sin 5x}{x^2 \sin 3x} =\]


\[\lim_{x \to \infty} \frac{\sqrt{x^2 - 1}}{2x + 1}\] 


If \[\lim_{x \to 1} \frac{x + x^2 + x^3 + . . . + x^n - n}{x - 1} = 5050\] then n equal


The value of \[\lim_{x \to 0} \frac{1 - \cos x + 2 \sin x - \sin^3 x - x^2 + 3 x^4}{\tan^3 x - 6 \sin^2 x + x - 5 x^3}\] is 


Evaluate the following limit:

`lim_(x -> 5)[(x^3 - 125)/(x^5 - 3125)]`


Evaluate the following limits: `lim_(x -> 5)[(x^3 - 125)/(x^2 - 25)]`


Evaluate the following Limits: `lim_(x -> "a") ((x + 2)^(5/3) - ("a" + 2)^(5/3))/(x - "a")`


If the value of `lim_(x -> 1) (1 - (1 - x))^"m"/x` is 99, then n = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×