Advertisements
Advertisements
प्रश्न
\[\lim_{x \to 0} \frac{2x - \sin x}{\tan x + x}\]
उत्तर
\[\lim_{x \to 0} \left[ \frac{2x - \sin x}{\tan x + x} \right]\] Dividing the numerator and the denominator by x, we get:
\[\lim_{x \to 0} \left[ \frac{2 - \frac{\sin x}{x}}{\frac{\tan x}{x} + 1} \right]\]
\[ = \frac{2 - 1}{1 + 1} \left[ \because \lim_{x \to 0} \frac{\tan x}{x} = 1, \lim_{x \to 0} \frac{\sin x}{x} = 1 \right]\]
\[ = \frac{1}{2}\]
APPEARS IN
संबंधित प्रश्न
\[\lim_{x \to 3} \frac{\sqrt{2x + 3}}{x + 3}\]
\[\lim_{x \to 1} \frac{\sqrt{x + 8}}{\sqrt{x}}\]
\[\lim_{x \to 3} \frac{x^2 - 9}{x + 2}\]
\[\lim_{x \to 0} \frac{ax + b}{cx + d}, d \neq 0\]
\[\lim_{x \to 3} \frac{x^2 - 4x + 3}{x^2 - 2x - 3}\]
\[\lim_{x \to 1/4} \frac{4x - 1}{2\sqrt{x} - 1}\]
\[\lim_{x \to 2} \left( \frac{1}{x - 2} - \frac{4}{x^3 - 2 x^2} \right)\]
\[\lim_{x \to 2} \left[ \frac{1}{x - 2} - \frac{2\left( 2x - 3 \right)}{x^3 - 3 x^2 + 2x} \right]\]
\[\lim_{x \to a} \frac{x^{5/7} - a^{5/7}}{x^{2/7} - a^{2/7}}\]
If \[\lim_{x \to a} \frac{x^3 - a^3}{x - a} = \lim_{x \to 1} \frac{x^4 - 1}{x - 1},\] find all possible values of a.
\[\lim_{x \to \infty} \frac{\left( 3x - 1 \right) \left( 4x - 2 \right)}{\left( x + 8 \right) \left( x - 1 \right)}\]
\[\lim_{n \to \infty} \left[ \frac{1^3 + 2^3 + . . . n^3}{\left( n - 1 \right)^4} \right]\]
\[\lim_{x \to 0} \frac{\sin x^0}{x}\]
\[\lim_{x \to 0} \frac{\tan mx}{\tan nx}\]
\[\lim_{x \to 0} \frac{\sin 5x}{\tan 3x}\]
\[\lim_{x \to 0} \frac{7x \cos x - 3 \sin x}{4x + \tan x}\]
\[\lim_{x \to 0} \frac{1 - \cos mx}{x^2}\]
\[\lim_{x \to 0} \frac{\cos 3x - \cos 7x}{x^2}\]
\[\lim_{x \to 0} \frac{\sin \left( 2 + x \right) - \sin \left( 2 - x \right)}{x}\]
\[\lim_{x \to 0} \frac{1 - \cos 4x}{x^2}\]
\[\lim_{x \to 0} \frac{ax + x \cos x}{b \sin x}\]
\[\lim_{x \to 0} \frac{1 - \cos 5x}{1 - \cos 6x}\]
\[\lim_{x \to \frac{\pi}{8}} \frac{\cot 4x - \cos 4x}{\left( \pi - 8x \right)^3}\]
\[\lim_{x \to 1} \frac{1 - \frac{1}{x}}{\sin \pi \left( x - 1 \right)}\]
\[\lim_{x \to 0^+} \left\{ 1 + \tan^2 \sqrt{x} \right\}^{1/2x}\]
\[\lim_{x \to 0^-} \frac{\sin \left[ x \right]}{\left[ x \right]} .\]
\[\lim_{x \to \infty} \left\{ \frac{3 x^2 + 1}{4 x^2 - 1} \right\}^\frac{x^3}{1 + x}\]
Write the value of \[\lim_{x \to 0^-} \frac{\sin \left[ x \right]}{\left[ x \right]} .\]
\[\lim_{n \to \infty} \left\{ \frac{1}{1 - n^2} + \frac{2}{1 - n^2} + . . . + \frac{n}{1 - n^2} \right\}\]
\[\lim_{x \to 0} \frac{8}{x^8}\left\{ 1 - \cos \frac{x^2}{2} - \cos \frac{x^2}{4} + \cos \frac{x^2}{2} \cos \frac{x^2}{4} \right\}\] is equal to
The value of \[\lim_{x \to 0} \frac{1 - \cos x + 2 \sin x - \sin^3 x - x^2 + 3 x^4}{\tan^3 x - 6 \sin^2 x + x - 5 x^3}\] is
The value of \[\lim_{n \to \infty} \left\{ \frac{1 + 2 + 3 + . . . + n}{n + 2} - \frac{n}{2} \right\}\]
\[\lim_{x \to 0} \frac{\left| \sin x \right|}{x}\]
Evaluate the following limit:
`lim_(x -> 7)[((root(3)(x) - root(3)(7))(root(3)(x) + root(3)(7)))/(x - 7)]`
`lim_(x->3) (x^5 - 243)/(x^3 - 27)` = ?
If the value of `lim_(x -> 1) (1 - (1 - x))^"m"/x` is 99, then n = ______.
Evaluate the Following limit:
`lim_(x->7)[[(root[3][x] - root[3][7])(root[3][x] + root[3][7])] / (x - 7)]`