Advertisements
Advertisements
प्रश्न
\[\lim_{x \to 0} \frac{8}{x^8}\left\{ 1 - \cos \frac{x^2}{2} - \cos \frac{x^2}{4} + \cos \frac{x^2}{2} \cos \frac{x^2}{4} \right\}\] is equal to
विकल्प
\[\frac{1}{16}\]
\[- \frac{1}{16}\]
\[\frac{1}{32}\]
\[- \frac{1}{32}\]
उत्तर
\[\frac{1}{32}\]
\[\lim_{x \to 0} \frac{8}{x^8} \left[ 1 - \cos \frac{x^2}{2} - \cos\frac{x^2}{4} + \cos\frac{x^2}{2}\cos \frac{x^2}{4} \right]\]
\[ = \lim_{x \to 0} \frac{8}{x^8} \left[ \left( 1 - \cos \frac{x^2}{4} \right) - \cos \frac{x^2}{2}\left( 1 - \cos\frac{x^2}{4} \right) \right]\]
\[ = \lim_{x \to 0} \frac{8}{x^8} \left[ \left( 1 - \cos\frac{x^2}{4} \right) \left( 1 - \cos\frac{x^2}{2} \right) \right]\]
\[ = \lim_{x \to 0} \frac{8}{x^8} \left[ \left( 2 \sin^2 \frac{x^2}{8} \right) \left( 2 \sin^2 \frac{x^2}{4} \right) \right]\]
\[ = \lim_{x \to 0} 4 \times 8 \frac{\left( \sin^2 \frac{x^2}{8} \right)}{\left( 64 \times \frac{x^4}{64} \right)} \frac{\left( \sin^2 \frac{x^2}{4} \right)}{16\left( \frac{x^4}{16} \right)}\]
\[ = \frac{32}{64 \times 16}\]
\[ = \frac{1}{32}\]
APPEARS IN
संबंधित प्रश्न
Show that \[\lim_{x \to 0} \frac{x}{\left| x \right|}\] does not exist.
\[\lim_{x \to 4} \frac{x^2 - 7x + 12}{x^2 - 3x - 4}\]
\[\lim_{x \to 2} \frac{x^4 - 16}{x - 2}\]
\[\lim_{x \to 5} \frac{x^3 - 125}{x^2 - 7x + 10}\]
\[\lim_{x \to 1/4} \frac{4x - 1}{2\sqrt{x} - 1}\]
\[\lim_{x \to 0} \frac{\left( a + x \right)^2 - a^2}{x}\]
\[\lim_{x \to a} \frac{x^{2/7} - a^{2/7}}{x - a}\]
\[\lim_{x \to a} \frac{x^{5/7} - a^{5/7}}{x^{2/7} - a^{2/7}}\]
\[\lim_{x \to - 1} \frac{x^3 + 1}{x + 1}\]
If \[\lim_{x \to 3} \frac{x^n - 3^n}{x - 3} = 108,\] find the value of n.
If \[\lim_{x \to a} \frac{x^9 - a^9}{x - a} = \lim_{x \to 5} \left( 4 + x \right),\] find all possible values of a.
\[\lim_{x \to \infty} \frac{3 x^{- 1} + 4 x^{- 2}}{5 x^{- 1} + 6 x^{- 2}}\]
\[\lim_{x \to 0} \frac{3 \sin x - 4 \sin^3 x}{x}\]
\[\lim_{x \to 0} \frac{1 - \cos mx}{x^2}\]
\[\lim_{x \to 0} \frac{x \tan x}{1 - \cos x}\]
\[\lim_{x \to \pi} \frac{\sin x}{\pi - x}\]
\[\lim_{x \to \frac{\pi}{3}} \frac{\sqrt{3} - \tan x}{\pi - 3x}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} - \cos x - \sin x}{\left( \frac{\pi}{4} - x \right)^2}\]
\[\lim_{x \to - 1} \frac{x^2 - x - 2}{\left( x^2 + x \right) + \sin \left( x + 1 \right)}\]
\[\lim_{x \to \frac{\pi}{2}} \left( \frac{\pi}{2} - x \right) \tan x\]
\[\lim_{x \to \frac{\pi}{6}} \frac{\cot^2 x - 3}{cosec x - 2}\]
\[\lim_{x \to 0} \frac{8^x - 2^x}{x}\]
\[\lim_{x \to 0} \left( \cos x + \sin x \right)^{1/x}\]
\[\lim_{x \to \infty} \left\{ \frac{3 x^2 + 1}{4 x^2 - 1} \right\}^\frac{x^3}{1 + x}\]
\[\lim_{x \to 0^-} \frac{\sin x}{\sqrt{x}} .\]
\[\lim_{n \to \infty} \left\{ \frac{1}{1 - n^2} + \frac{2}{1 - n^2} + . . . + \frac{n}{1 - n^2} \right\}\]
\[\lim_{x \to 3} \frac{x - 3}{\left| x - 3 \right|},\] is equal to
If \[\lim_{x \to 1} \frac{x + x^2 + x^3 + . . . + x^n - n}{x - 1} = 5050\] then n equal
The value of \[\lim_{x \to \infty} \frac{\sqrt{1 + x^4} + \left( 1 + x^2 \right)}{x^2}\] is
If \[f\left( x \right) = \left\{ \begin{array}{l}x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0\end{array}, \right.\] then \[\lim_{x \to 0} f\left( x \right)\] equals
\[\lim_{x \to 1} \left[ x - 1 \right]\] where [.] is the greatest integer function, is equal to
\[\lim_{x \to \infty} \frac{\left| x \right|}{x}\] is equal to
\[\lim_{x \to 0} \frac{\left| \sin x \right|}{x}\]
Evaluate the following limit:
`lim_(x -> 7)[((root(3)(x) - root(3)(7))(root(3)(x) + root(3)(7)))/(x - 7)]`
Evaluate the following limits: `lim_(x -> 5)[(x^3 - 125)/(x^2 - 25)]`
`1/(ax^2 + bx + c)`
Evaluate the following limits: `lim_(x ->3) [sqrt(x + 6)/x]`
Evaluate the following limit:
`lim_(x->3)[(sqrt(x+6))/x]`