Advertisements
Advertisements
प्रश्न
If \[f\left( x \right) = \left\{ \begin{array}{l}x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0\end{array}, \right.\] then \[\lim_{x \to 0} f\left( x \right)\] equals
विकल्प
1
0
−1
none of these
उत्तर
0
\[f\left( x \right) = \binom{x\sin\left( \frac{1}{x} \right), x \neq 0}{0, x = 0}\]
LHL:
\[\lim_{x \to 0^-} f\left( x \right)\]
\[ = \lim_{x \to 0^-} \left[ x\sin\left( \frac{1}{x} \right) \right]\]
Let x = 0 – h, where h → 0.
\[= \lim_{h \to 0} \left[ \left( - h \right) \times \sin\left( - \frac{1}{h} \right) \right]\]
= 0 × The oscillating number between –1 and 1
= 0
RHL
\[\lim_{x \to 0^+} f\left( x \right)\]
Let x = 0 + h, where h → 0.
\[= \lim_{h \to 0} \left[ h \times \sin\left( \frac{1}{h} \right) \right]\]
= 0 × The oscillating number between –1 and 1
= 0
LHL = RHL = 0
\[\therefore \lim_{x \to 0} f\left( x \right) = 0\]
APPEARS IN
संबंधित प्रश्न
\[\lim_{x \to \sqrt{3}} \frac{x^4 - 9}{x^2 + 4\sqrt{3}x - 15}\]
\[\lim_{x \to - 2} \frac{x^3 + x^2 + 4x + 12}{x^3 - 3x + 2}\]
\[\lim_{x \to 1} \frac{x^{15} - 1}{x^{10} - 1}\]
If \[\lim_{x \to 3} \frac{x^n - 3^n}{x - 3} = 108,\] find the value of n.
\[\lim_{x \to \infty} \frac{3 x^3 - 4 x^2 + 6x - 1}{2 x^3 + x^2 - 5x + 7}\]
\[\lim_{n \to \infty} \frac{n^2}{1 + 2 + 3 + . . . + n}\]
\[\lim_{x \to \infty} \left[ \left\{ \sqrt{x + 1} - \sqrt{x} \right\} \sqrt{x + 2} \right]\]
\[\lim_{n \to \infty} \left[ \frac{1^3 + 2^3 + . . . n^3}{\left( n - 1 \right)^4} \right]\]
\[\lim_{x \to \infty} \left[ \frac{x^4 + 7 x^3 + 46x + a}{x^4 + 6} \right]\] where a is a non-zero real number.
\[\lim_{x \to 0} \frac{\sin x^0}{x}\]
\[\lim_{x \to 0} \frac{\sin x^n}{x^n}\]
\[\lim_{x \to 0} \frac{\sin^2 4 x^2}{x^4}\]
\[\lim_{x \to 0} \frac{\sin 5x - \sin 3x}{\sin x}\]
\[\lim_{x \to 0} \frac{1 - \cos 2x + \tan^2 x}{x \sin x}\]
Evaluate the following limits:
\[\lim_{x \to 0} \frac{\cos ax - \cos bx}{\cos cx - 1}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{x - \frac{\pi}{4}}\]
\[\lim_{x \to 1} \frac{1 - x^2}{\sin 2\pi x}\]
\[\lim_{x \to 1} \frac{1 + \cos \pi x}{\left( 1 - x \right)^2}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} - \cos x - \sin x}{\left( 4x - \pi \right)^2}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{2 - {cosec}^2 x}{1 - \cot x}\]
\[\lim_{x \to \pi} \frac{\sqrt{2 + \cos x} - 1}{\left( \pi - x \right)^2}\]
\[\lim_{x \to 0} \left( \cos x + \sin x \right)^{1/x}\]
\[\lim_{x \to \infty} \frac{\sin x}{x} .\]
\[\lim_{x \to 0^-} \frac{\sin x}{\sqrt{x}} .\]
\[\lim_{x \to } \frac{1 - \cos 2x}{x} is\]
\[\lim_{x \to 0} \frac{x}{\tan x} is\]
\[\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{x}\] is equal to
\[\lim_{x \to 0} \frac{8}{x^8}\left\{ 1 - \cos \frac{x^2}{2} - \cos \frac{x^2}{4} + \cos \frac{x^2}{2} \cos \frac{x^2}{4} \right\}\] is equal to
If α is a repeated root of ax2 + bx + c = 0, then \[\lim_{x \to \alpha} \frac{\tan \left( a x^2 + bx + c \right)}{\left( x - \alpha \right)^2}\]
The value of \[\lim_{x \to 0} \frac{1 - \cos x + 2 \sin x - \sin^3 x - x^2 + 3 x^4}{\tan^3 x - 6 \sin^2 x + x - 5 x^3}\] is
The value of \[\lim_{x \to \pi/2} \left( \sec x - \tan x \right)\]is
\[\lim_{x \to 0} \frac{\left| \sin x \right|}{x}\]
Evaluate the following limits: `lim_(x -> 2)[(x^(-3) - 2^(-3))/(x - 2)]`
Evaluate the following limits: if `lim_(x -> 1)[(x^4 - 1)/(x - 1)] = lim_(x -> "a") [(x^3 - "a"^3)/(x - "a")]`, find all the value of a.
Evaluate the following limits: `lim_(x -> 0)[((1 - x)^8 - 1)/((1 - x)^2 - 1)]`
Evaluate the Following limit:
`lim_(x->5) [(x^3 -125)/(x^5-3125)]`
Evaluate the following limit.
`lim_(x->5)[(x^3 -125)/(x^5 - 3125)]`
Evaluate the following limit:
`\underset{x->3}{lim}[sqrt(x +6)/(x)]`