Advertisements
Advertisements
प्रश्न
\[\lim_{x \to 0^+} \left\{ 1 + \tan^2 \sqrt{x} \right\}^{1/2x}\]
उत्तर
\[\lim_{x \to 0^+} \left[ 1 + \tan^2 \sqrt{x} \right] {}^\frac{1}{2x} \]
\[\text{ Using the theorem given below }: \]
\[\text{ If } \lim_{x \to a} f\left( x \right) = \lim_{x \to a} g\left( x \right) = 0 \text{ such that } \lim_{x \to a} \frac{f\left( x \right)}{g\left( x \right)} \text{ exists, then } \lim_{x \to a} \left[ 1 + f\left( x \right) \right]^\frac{1}{g\left( x \right)} = e^\lim_{x \to a} \frac{f\left( x \right)}{g\left( x \right)} . \]
\[\text{ Here }: \]
\[ f\left( x \right) = \tan^2 \sqrt{x}\]
\[ g\left( x \right) = 2x\]
\[ \Rightarrow e^\lim_{x \to 0^+} \left( \frac{\tan^2 \sqrt{x}}{2x} \right) \]
\[ = e^\lim_{x \to 0^+} \left( \frac{\tan \sqrt{x}}{\sqrt{x}} \right) \times \left( \frac{\tan \sqrt{x}}{\sqrt{x}} \right) \times \frac{1}{2} \]
\[ = e^{1 \times 1 \times \frac{1}{2}} \]
\[ = \sqrt{e}\]
APPEARS IN
संबंधित प्रश्न
\[\lim_{x \to 1} \frac{x^2 + 1}{x + 1}\]
\[\lim_{x \to 3} \frac{\sqrt{2x + 3}}{x + 3}\]
\[\lim_{x \to 3} \frac{x^2 - 9}{x + 2}\]
\[\lim_{x \to - 5} \frac{2 x^2 + 9x - 5}{x + 5}\]
\[\lim_{x \to 1} \left( \frac{1}{x^2 + x - 2} - \frac{x}{x^3 - 1} \right)\]
\[\lim_{x \to 0} \frac{\left( a + x \right)^2 - a^2}{x}\]
\[\lim_{x \to 1} \left( \frac{1}{x - 1} - \frac{2}{x^2 - 1} \right)\]
\[\lim_{x \to 2} \frac{x^3 + 3 x^2 - 9x - 2}{x^3 - x - 6}\]
\[\lim_{x \to 1} \frac{\sqrt{x^2 - 1} + \sqrt{x - 1}}{\sqrt{x^2 - 1}}, x > 1\]
\[\lim_{x \to a} \frac{\left( x + 2 \right)^{5/2} - \left( a + 2 \right)^{5/2}}{x - a}\]
\[\lim_{x \to \infty} \frac{5 x^3 - 6}{\sqrt{9 + 4 x^6}}\]
\[\lim_{x \to - \infty} \left( \sqrt{4 x^2 - 7x} + 2x \right)\]
\[\lim_{x \to 0} \frac{\sin x^0}{x}\]
\[\lim_{x \to 0} \frac{5 x \cos x + 3 \sin x}{3 x^2 + \tan x}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}{x}\]
\[\lim_{x \to 0} \frac{1 - \cos 2x}{3 \tan^2 x}\]
Evaluate the following limits:
\[\lim_{x \to 0} \frac{2\sin x - \sin2x}{x^3}\]
\[\lim_{x \to 0} \frac{cosec x - \cot x}{x}\]
\[\lim_{x \to 0} \frac{5x + 4 \sin 3x}{4 \sin 2x + 7x}\]
\[\lim_{x \to 0} \frac{\tan 2x - \sin 2x}{x^3}\]
\[\lim_{x \to 0} \left( cosec x - \cot x \right)\]
\[\lim_{x \to a} \frac{\cos x - \cos a}{x - a}\]
Write the value of \[\lim_{x \to 0^+} \left[ x \right] .\]
Write the value of \[\lim_{x \to 0^-} \frac{\sin \left[ x \right]}{\left[ x \right]} .\]
\[\lim_{x \to \infty} \frac{\sin x}{x} .\]
\[\lim_{n \to \infty} \frac{1^2 + 2^2 + 3^2 + . . . + n^2}{n^3}\]
\[\lim_{x \to \pi/4} \frac{\sqrt{2} \cos x - 1}{\cot x - 1}\] is equal to
\[\lim_{n \to \infty} \frac{n!}{\left( n + 1 \right)! + n!}\] is equal to
\[\lim_\theta \to \pi/2 \frac{1 - \sin \theta}{\left( \pi/2 - \theta \right) \cos \theta}\] is equal to
The value of \[\lim_{x \to \pi/2} \left( \sec x - \tan x \right)\]is
The value of \[\lim_{x \to \infty} \frac{n!}{\left( n + 1 \right)! - n!}\]
\[\lim_{x \to 1} \left[ x - 1 \right]\] where [.] is the greatest integer function, is equal to
Evaluate the following limits: `lim_(x -> 2)[(x^(-3) - 2^(-3))/(x - 2)]`
Evaluate the following limit:
`lim_(x -> 5)[(x^3 - 125)/(x^5 - 3125)]`
If the value of `lim_(x -> 1) (1 - (1 - x))^"m"/x` is 99, then n = ______.
If `lim_(x -> 1) (x^4 - 1)/(x - 1) = lim_(x -> k) (x^3 - l^3)/(x^2 - k^2)`, then find the value of k.
Evaluate the following limit:
`lim_(x->3)[sqrt(x+6)/x]`
Evaluate the following limit:
`lim_(x->5)[(x^3-125)/(x^5-3125)]`
Evaluate the following limits: `lim_(x -> 3) [sqrt(x + 6)/x]`