Advertisements
Advertisements
प्रश्न
\[\lim_{x \to 1} \left( \frac{1}{x^2 + x - 2} - \frac{x}{x^3 - 1} \right)\]
उत्तर
\[\lim_{x \to 1} \left[ \frac{\left( x^3 - 1 \right) - x\left( x^2 + x - 2 \right)}{\left( x^2 + x - 2 \right)\left( x^3 - 1 \right)} \right]\]
\[ = \lim_{x \to 1} \left[ \frac{\left( x^3 - 1 \right) - x^3 - x^2 + 2x}{\left( x^2 + x - 2 \right)\left( x^3 - 1 \right)} \right]\]
\[ = \lim_{x \to 1} \left[ \frac{- x^2 + 2x - 1}{\left( x^2 + x - 2 \right)\left( x - 1 \right)\left( x^2 + x + 1 \right)} \right]\]
\[ = \lim_{x \to 1} \left[ \frac{- \left( x^2 - 2x + 1 \right)}{\left( x^2 + x - 2 \right)\left( x - 1 \right)\left( x^2 + x + 1 \right)} \right]\]
\[ = \lim_{x \to 1} \left[ \frac{- \left( x - 1 \right)^2}{\left( x^2 + x - 2 \right)\left( x - 1 \right)\left( x^2 + x + 1 \right)} \right]\]
\[ = \lim_{x \to 1} \left[ \frac{- \left( x - 1 \right)}{\left( x^2 + 2x - x - 2 \right)\left( x^2 + x + 1 \right)} \right]\]
\[ = \lim_{x \to 1} \left[ \frac{- \left( x - 1 \right)}{\left\{ x\left( x + 2 \right) - 1\left( x + 2 \right) \right\}\left( x^2 + x + 1 \right)} \right]\]
\[ = \lim_{x \to 1} \left[ \frac{- \left( x - 1 \right)}{\left( x - 1 \right)\left( x + 2 \right)\left( x^2 + x + 1 \right)} \right]\]
\[ = \frac{- 1}{\left( 1 + 2 \right)\left( 1 + 1 + 1 \right)}\]
\[ = \frac{- 1}{9}\]
APPEARS IN
संबंधित प्रश्न
Find `lim_(x -> 5) f(x)`, where f(x) = |x| - 5
\[\lim_{x \to 0} 9\]
\[\lim_{x \to 3} \frac{x^4 - 81}{x^2 - 9}\]
\[\lim_{x \to - 1/2} \frac{8 x^3 + 1}{2x + 1}\]
\[\lim_{x \to \sqrt{3}} \frac{x^2 - 3}{x^2 + 3 \sqrt{3}x - 12}\]
\[\lim_{x \to 0} \frac{\left( a + x \right)^2 - a^2}{x}\]
\[\lim_{x \to 2} \frac{x^3 + 3 x^2 - 9x - 2}{x^3 - x - 6}\]
\[\lim_{x \to 1} \frac{1 - x^{- 1/3}}{1 - x^{- 2/3}}\]
\[\lim_{x \to a} \frac{\left( x + 2 \right)^{5/2} - \left( a + 2 \right)^{5/2}}{x - a}\]
\[\lim_{n \to \infty} \frac{n^2}{1 + 2 + 3 + . . . + n}\]
\[\lim_{x \to \infty} \frac{3 x^{- 1} + 4 x^{- 2}}{5 x^{- 1} + 6 x^{- 2}}\]
\[\lim_{x \to 0} \left[ \frac{x^2}{\sin x^2} \right]\]
\[\lim_{x \to 0} \frac{\sin x \cos x}{3x}\]
\[\lim_{x \to 0} \frac{2x - \sin x}{\tan x + x}\]
\[\lim_{x \to 0} \frac{3 \sin^2 x - 2 \sin x^2}{3 x^2}\]
\[\lim_{x \to 0} \frac{\sin 3x + 7x}{4x + \sin 2x}\]
\[\lim_{n \to \infty} \frac{\sin \left( \frac{a}{2^n} \right)}{\sin \left( \frac{b}{2^n} \right)}\]
\[\lim_{x \to \pi} \frac{\sqrt{2 + \cos x} - 1}{\left( \pi - x \right)^2}\]
\[\lim_{x \to \frac{\pi}{2}} \frac{\left( \frac{\pi}{2} - x \right) \sin x - 2 \cos x}{\left( \frac{\pi}{2} - x \right) + \cot x}\]
\[\lim_{x \to \pi} \frac{1 + \cos x}{\tan^2 x}\]
\[\lim_{x \to 0} \left( \cos x + a \sin bx \right)^{1/x}\]
Write the value of \[\lim_{x \to 1^-} x - \left[ x \right] .\]
Write the value of \[\lim_{x \to 2} \frac{\left| x - 2 \right|}{x - 2} .\]
\[\lim_{n \to \infty} \frac{1^2 + 2^2 + 3^2 + . . . + n^2}{n^3}\]
\[\lim 2_{h \to 0} \left\{ \frac{\sqrt{3} \sin \left( \pi/6 + h \right) - \cos \left( \pi/6 + h \right)}{\sqrt{3} h \left( \sqrt{3} \cos h - \sin h \right)} \right\}\]
\[\lim_{x \to \pi/4} \frac{4\sqrt{2} - \left( \cos x + \sin x \right)^5}{1 - \sin 2x}\] is equal to
\[\lim_{x \to 2} \frac{\sqrt{1 + \sqrt{2 + x} - \sqrt{3}}}{x - 2}\] is equal to
\[\lim_\theta \to \pi/2 \frac{1 - \sin \theta}{\left( \pi/2 - \theta \right) \cos \theta}\] is equal to
Evaluate the following limits: `lim_(x -> 2)[(x^(-3) - 2^(-3))/(x - 2)]`
Evaluate the following limit:
`lim_(x -> 5)[(x^3 - 125)/(x^5 - 3125)]`
Evaluate the following limits: `lim_(x -> 5)[(x^3 - 125)/(x^2 - 25)]`
Evaluate the following Limits: `lim_(x -> "a") ((x + 2)^(5/3) - ("a" + 2)^(5/3))/(x - "a")`
Evaluate the following Limit:
`lim_(x -> 0) ((1 + x)^"n" - 1)/x`
If `lim_(x -> 1) (x^4 - 1)/(x - 1) = lim_(x -> k) (x^3 - l^3)/(x^2 - k^2)`, then find the value of k.
If `f(x) = {{:(x + 2",", x ≤ - 1),(cx^2",", x > -1):}`, find 'c' if `lim_(x -> -1) f(x)` exists
Evaluate the following limit :
`lim_(x->5)[(x^3-125)/(x^5-3125)]`