Advertisements
Advertisements
प्रश्न
\[\lim_{x \to \pi/4} \frac{\sqrt{2} \cos x - 1}{\cot x - 1}\] is equal to
विकल्प
\[\frac{1}{\sqrt{2}}\]
\[\frac{1}{2}\]
\[\frac{1}{2\sqrt{2}}\]
1
उत्तर
1/2
\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2}\cos x - 1}{\cot x - 1}\]
\[\text{ Rationalising the numerator, we get }: \]
\[ = \lim_{x \to \frac{\pi}{4}} \left( \frac{\sqrt{2} \cos x - 1}{\cot x - 1} \right) \times \left( \frac{\sqrt{2} \cos x + 1}{\sqrt{2} \cos x + 1} \right)\]
\[ = \lim_{x \to \frac{\pi}{4}} \frac{\left( 2 \cos^2 x - 1 \right)}{\left( \cos x - \sin x \right)} \times \frac{\sin x}{\left( \sqrt{2}\cos x + 1 \right)}\]
\[ = \lim_{x \to \frac{\pi}{4}} \frac{\left( \cos^2 x - \sin^2 x \right)}{\left( \cos x - \sin x \right)} \times \frac{\sin x}{\left( \sqrt{2}\cos x + 1 \right)}\]
\[ = \lim_{x \to \frac{\pi}{4}} \frac{\left( \cos x + \sin x \right) \sin x}{\left( \sqrt{2}\cos x + 1 \right)}\]
\[ = \frac{\left( \cos \frac{\pi}{4} + \sin \frac{\pi}{4} \right) \sin \frac{\pi}{4}}{\left( \sqrt{2}\cos \frac{\pi}{4} + 1 \right)}\]
\[ = \frac{\left( \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \right)\left( \frac{1}{\sqrt{2}} \right)}{\sqrt{2} . \frac{1}{\sqrt{2}} + 1}\]
\[ = \frac{\left( \frac{2}{\sqrt{2}} \right) \times \frac{1}{\sqrt{2}}}{2}\]
\[ = \frac{1}{2}\]
The correct answer is B.
APPEARS IN
संबंधित प्रश्न
Show that \[\lim_{x \to 0} \frac{x}{\left| x \right|}\] does not exist.
\[\lim_{x \to 0} \frac{2 x^2 + 3x + 4}{x^2 + 3x + 2}\]
\[\lim_{x \to 0} \frac{x^{2/3} - 9}{x - 27}\]
\[\lim_{x \to 0} \frac{ax + b}{cx + d}, d \neq 0\]
\[\lim_{x \to 2} \frac{x^3 - 8}{x^2 - 4}\]
\[\lim_{x \to 4} \frac{x^3 - 64}{x^2 - 16}\]
If \[\lim_{x \to a} \frac{x^5 - a^5}{x - a} = 405,\]find all possible values of a.
\[\lim_{x \to \infty} \frac{x}{\sqrt{4 x^2 + 1} - 1}\]
\[\lim_{x \to \infty} \frac{3 x^{- 1} + 4 x^{- 2}}{5 x^{- 1} + 6 x^{- 2}}\]
\[f\left( x \right) = \frac{a x^2 + b}{x^2 + 1}, \lim_{x \to 0} f\left( x \right) = 1\] and \[\lim_{x \to \infty} f\left( x \right) = 1,\]then prove that f(−2) = f(2) = 1
\[\lim_{x \to 0} \frac{\tan mx}{\tan nx}\]
\[\lim_{x \to 0} \frac{\sin 5x}{\tan 3x}\]
\[\lim_{x \to 0} \frac{5 x \cos x + 3 \sin x}{3 x^2 + \tan x}\]
\[\lim_{x \to 0} \frac{1 - \cos 2x}{\cos 2x - \cos 8x}\]
\[\lim_{x \to 0} \frac{x \tan x}{1 - \cos x}\]
\[\lim_{x \to 0} \frac{1 - \cos 4x}{x^2}\]
\[\lim_{x \to 0} \frac{x \cos x + \sin x}{x^2 + \tan x}\]
Evaluate the following limits:
\[\lim_{x \to 0} \frac{\cos ax - \cos bx}{\cos cx - 1}\]
\[\lim_{x \to \frac{\pi}{2}} \frac{\cos^2 x}{1 - \sin x}\]
\[\lim_{x \to 1} \left( 1 - x \right) \tan \left( \frac{\pi x}{2} \right)\]
\[\lim_{x \to \pi} \frac{1 + \cos x}{\tan^2 x}\]
\[\lim_{x \to \pi} \frac{\sqrt{2 + \cos x} - 1}{\left( \pi - x \right)^2}\]
\[\lim_{x \to 0^+} \left\{ 1 + \tan^2 \sqrt{x} \right\}^{1/2x}\]
\[\lim_{x \to 0} \left( \cos x + \sin x \right)^{1/x}\]
Write the value of \[\lim_{x \to 0^-} \left[ x \right] .\]
\[\lim_{x \to \infty} \left\{ \frac{3 x^2 + 1}{4 x^2 - 1} \right\}^\frac{x^3}{1 + x}\]
\[\lim_{x \to 0} \frac{x}{\tan x} is\]
\[\lim_{x \to \infty} \frac{\sqrt{x^2 - 1}}{2x + 1}\]
\[\lim_{n \to \infty} \left\{ \frac{1}{1 . 3} + \frac{1}{3 . 5} + \frac{1}{5 . 7} + . . . + \frac{1}{\left( 2n + 1 \right) \left( 2n + 3 \right)} \right\}\]is equal to
The value of \[\lim_{x \to \infty} \frac{\sqrt{1 + x^4} + \left( 1 + x^2 \right)}{x^2}\] is
\[\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{x}\] is equal to
The value of \[\lim_{x \to \pi/2} \left( \sec x - \tan x \right)\]is
Evaluate the following limits: `lim_(x -> "a")[((z + 2)^(3/2) - ("a" + 2)^(3/2))/(z - "a")]`
Evaluate the following Limit:
`lim_(x -> 0) ((1 + x)^"n" - 1)/x`
Evaluate `lim_(h -> 0) ((a + h)^2 sin (a + h) - a^2 sina)/h`
Evaluate the following limit.
`lim_(x->3)[sqrt(x + 6)/x]`
Evaluate the following limit:
`\underset{x->3}{lim}[sqrt(x +6)/(x)]`
Evaluate the Following limit:
`lim_(x->7)[[(root[3][x] - root[3][7])(root[3][x] + root[3][7])] / (x - 7)]`