Advertisements
Advertisements
प्रश्न
\[\lim_{x \to 0} \frac{2 \sin x^\circ - \sin 2 x^\circ}{x^3}\]
उत्तर
\[\lim_{x \to 0} \left[ \frac{2 \sin x° - \sin \left( 2x° \right)}{x^3} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{2 \sin \left( \frac{\pi x}{180} \right) - \sin \left( \frac{2\pi x}{180} \right)}{x^3} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{2 \sin \left( \frac{\pi x}{180} \right) - 2 \sin \left( \frac{\pi x}{180} \right) \times \cos\left( \frac{\pi x}{180} \right)}{x^3} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{2 \sin \left( \frac{\pi x}{180} \right) \left[ 1 - \cos \left( \frac{\pi x}{180} \right) \right]}{x^3} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{2 \sin \left( \frac{\pi x}{180} \right) \times 2 \sin^2 \left( \frac{\pi x}{360} \right)}{x \times x^2} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{4 \sin \left[ \frac{\pi x}{180} \right] \times \sin^2 \left[ \frac{\pi x}{360} \right]}{\frac{\pi x}{180} \times \frac{\pi x}{360} \times \frac{\pi x}{360}} \times \frac{\pi}{180} \times \left( \frac{\pi}{360} \right)^2 \right]\]
\[ = 4 \lim_{x \to 0} \left[ \frac{\sin \left( \frac{\pi x}{180} \right)}{\frac{\pi x}{180}} \times \frac{\sin \left( \frac{\pi x}{360} \right) \times \sin \left( \frac{\pi x}{360} \right)}{\frac{\pi x}{360} \times \frac{\pi x}{360}} \times \frac{\pi^3}{180 \times {360}^2} \right]\]
\[ = 4 \times 1 \times 1 \times 1 \times \frac{\pi^3}{180 \times 360 \times 360}\]
\[ = \left( \frac{\pi}{180} \right)^3\]
APPEARS IN
संबंधित प्रश्न
\[\lim_{x \to 1} \frac{x^2 + 1}{x + 1}\]
\[\lim_{x \to 3} \frac{x^2 - 9}{x + 2}\]
\[\lim_{x \to 5} \frac{x^2 - 9x + 20}{x^2 - 6x + 5}\]
\[\lim_{x \to 2} \left( \frac{x}{x - 2} - \frac{4}{x^2 - 2x} \right)\]
\[\lim_{x \to 3} \left( x^2 - 9 \right) \left[ \frac{1}{x + 3} + \frac{1}{x - 3} \right]\]
\[\lim_{x \to a} \frac{\left( x + 2 \right)^{5/2} - \left( a + 2 \right)^{5/2}}{x - a}\]
\[\lim_{x \to 0} \frac{\left( 1 + x \right)^6 - 1}{\left( 1 + x \right)^2 - 1}\]
\[\lim_{x \to a} \frac{x^{2/7} - a^{2/7}}{x - a}\]
If \[\lim_{x \to a} \frac{x^5 - a^5}{x - a} = 405,\]find all possible values of a.
\[\lim_{x \to \infty} \frac{5 x^3 - 6}{\sqrt{9 + 4 x^6}}\]
\[\lim_{x \to \infty} \sqrt{x^2 + cx - x}\]
\[\lim_{x \to \infty} \frac{x}{\sqrt{4 x^2 + 1} - 1}\]
\[\lim_{n \to \infty} \frac{n^2}{1 + 2 + 3 + . . . + n}\]
\[\lim_{x \to \infty} \left[ x\left\{ \sqrt{x^2 + 1} - \sqrt{x^2 - 1} \right\} \right]\]
\[\lim_{n \to \infty} \left[ \frac{1^3 + 2^3 + . . . n^3}{\left( n - 1 \right)^4} \right]\]
\[\lim_{x \to 0} \frac{1 - \cos mx}{x^2}\]
\[\lim_{x \to 0} \frac{x \cos x + 2 \sin x}{x^2 + \tan x}\]
\[\lim_{x \to 0} \frac{\sin 3x - \sin x}{\sin x}\]
\[\lim_{x \to 0} \frac{x^2 - \tan 2x}{\tan x}\]
\[\lim_{x \to 0} \frac{x \tan x}{1 - \cos x}\]
\[\lim_{x \to 0} \frac{\cos 2x - 1}{\cos x - 1}\]
\[\lim_{x \to 0} \frac{1 - \cos 5x}{1 - \cos 6x}\]
\[\lim_{x \to 0} \frac{\tan 2x - \sin 2x}{x^3}\]
\[\lim_{x \to \frac{\pi}{3}} \frac{\sqrt{3} - \tan x}{\pi - 3x}\]
\[\lim_{x \to 1} \frac{1 - x^2}{\sin \pi x}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{1 - \sqrt{2} \sin x}\]
Evaluate the following limit:
\[\lim_{x \to \pi} \frac{1 - \sin\frac{x}{2}}{\cos\frac{x}{2}\left( \cos\frac{x}{4} - \sin\frac{x}{4} \right)}\]
\[\lim_{n \to \infty} \left( 1 + \frac{x}{n} \right)^n\]
Write the value of \[\lim_{x \to 0^-} \left[ x \right] .\]
Write the value of \[\lim_{x \to 1^-} x - \left[ x \right] .\]
\[\lim_{h \to 0} \left\{ \frac{1}{h\sqrt[3]{8 + h}} - \frac{1}{2h} \right\} =\]
\[\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{x}\] is equal to
Evaluate the following limit:
`lim_(x -> 7)[((root(3)(x) - root(3)(7))(root(3)(x) + root(3)(7)))/(x - 7)]`
Evaluate the following Limit:
`lim_(x -> 0) ((1 + x)^"n" - 1)/x`
Let `f(x) = {{:((k cos x)/(pi - 2x)",", "when" x ≠ pi/2),(3",", x = pi/2 "and if" f(x) = f(pi/2)):}` find the value of k.
Evaluate the following limits: `lim_(x -> 3) [sqrt(x + 6)/x]`
Evaluate the following limit.
`lim_(x->3)[sqrt(x + 6)/x]`
Evaluate the following limit.
`lim_(x->5)[(x^3 -125)/(x^5 - 3125)]`
Evaluate the Following limit:
`lim_ (x -> 3) [sqrt (x + 6)/ x]`