हिंदी

Evaluate the Following Limit: Lim X → π 1 − Sin X 2 Cos X 2 ( Cos X 4 − Sin X 4 ) - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following limit:

\[\lim_{x \to \pi} \frac{1 - \sin\frac{x}{2}}{\cos\frac{x}{2}\left( \cos\frac{x}{4} - \sin\frac{x}{4} \right)}\]

 

उत्तर

\[\lim_{x \to \pi} \frac{1 - \sin\frac{x}{2}}{\cos\frac{x}{2}\left( \cos\frac{x}{4} - \sin\frac{x}{4} \right)}\]

Put

\[x = \pi + h\] When \[x \to \pi, h \to 0\] 

\[\therefore \lim_{x \to \pi} \frac{1 - \sin\frac{x}{2}}{\cos\frac{x}{2}\left( \cos\frac{x}{4} - \sin\frac{x}{4} \right)}\]
\[ = \lim_{h \to 0} \frac{1 - \sin\left( \frac{\pi + h}{2} \right)}{\cos\left( \frac{\pi + h}{2} \right)\left[ \cos\left( \frac{\pi + h}{4} \right) - \sin\left( \frac{\pi + h}{4} \right) \right]}\]
\[ = \lim_{h \to 0} \frac{1 - \sin\left( \frac{\pi}{2} + \frac{h}{2} \right)}{\cos\left( \frac{\pi}{2} + \frac{h}{2} \right)\left[ \cos\left( \frac{\pi}{4} + \frac{h}{4} \right) - \sin\left( \frac{\pi}{4} + \frac{h}{4} \right) \right]}\]
\[ = \lim_{h \to 0} \frac{1 - \cos\left( \frac{h}{2} \right)}{- \sin\left( \frac{h}{2} \right)\left[ \left( \cos\frac{\pi}{4}\cos\frac{h}{4} - \sin\frac{\pi}{4}\sin\frac{h}{4} \right) - \left( \sin\frac{\pi}{4}\cos\frac{h}{4} + \cos\frac{\pi}{4}\sin\frac{h}{4} \right) \right]}\]

\[= \lim_{h \to 0} \frac{2 \sin^2 \frac{h}{4}}{- 2\sin\frac{h}{4}\cos\frac{h}{4}\left( \frac{1}{\sqrt{2}}\cos\frac{h}{4} - \frac{1}{\sqrt{2}}\sin\frac{h}{4} - \frac{1}{\sqrt{2}}\cos\frac{h}{4} - \frac{1}{\sqrt{2}}\sin\frac{h}{4} \right)}\]
\[ = \lim_{h \to 0} \frac{\sin\frac{h}{4}}{- \cos\frac{h}{4} \times \left( - \sqrt{2}\sin\frac{h}{4} \right)}\]
\[ = \frac{1}{\sqrt{2}} \times \frac{1}{\lim_{h \to 0} \cos\frac{h}{4}}\]
\[ = \frac{1}{\sqrt{2}} \times 1 \left( \lim_\theta \to 0 \cos\theta = 1 \right)\]
\[ = \frac{1}{\sqrt{2}}\]

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 29: Limits - Exercise 29.8 [पृष्ठ ६३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 29 Limits
Exercise 29.8 | Q 38 | पृष्ठ ६३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find `lim_(x -> 5) f(x)`, where f(x)  = |x| - 5


\[\lim_{x \to 3} \frac{\sqrt{2x + 3}}{x + 3}\] 


\[\lim_{x \to 1} \frac{\sqrt{x + 8}}{\sqrt{x}}\] 


\[\lim_{x \to 2} \left( \frac{1}{x - 2} - \frac{2}{x^2 - 2x} \right)\] 


\[\lim_{x \to 1} \left( \frac{1}{x - 1} - \frac{2}{x^2 - 1} \right)\]


\[\lim_{x \to 2} \frac{x^3 + 3 x^2 - 9x - 2}{x^3 - x - 6}\] 


\[\lim_{x \to 3} \frac{x^2 - x - 6}{x^3 - 3 x^2 + x - 3}\]


\[\lim_{x \to 1} \left\{ \frac{x - 2}{x^2 - x} - \frac{1}{x^3 - 3 x^2 + 2x} \right\}\] 


If \[\lim_{x \to a} \frac{x^9 - a^9}{x - a} = \lim_{x \to 5} \left( 4 + x \right),\] find all possible values of a


\[\lim_{x \to \infty} \frac{5 x^3 - 6}{\sqrt{9 + 4 x^6}}\]


\[\lim_{x \to - \infty} \left( \sqrt{x^2 - 8x} + x \right)\] 


\[\lim_{x \to 0} \frac{7x \cos x - 3 \sin x}{4x + \tan x}\] 


\[\lim_{x \to 0} \frac{\cos ax - \cos bx}{\cos cx - \cos dx}\] 


\[\lim_{x \to 0} \frac{\sin^2 4 x^2}{x^4}\] 


\[\lim_{x \to 0} \frac{\sin \left( 3 + x \right) - \sin \left( 3 - x \right)}{x}\] 


\[\lim_{x \to 0} \frac{1 - \cos 2x}{3 \tan^2 x}\] 


\[\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{\left( \frac{\pi}{2} - x \right)^2}\]


\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} - \cos x - \sin x}{\left( \frac{\pi}{4} - x \right)^2}\] 


\[\lim_{x \to a} \frac{\cos x - \cos a}{\sqrt{x} - \sqrt{a}}\]


\[\lim_{x \to \frac{\pi}{4}} \frac{1 - \sin 2x}{1 + \cos 4x}\] 


\[\lim_{x \to \pi} \frac{\sqrt{2 + \cos x} - 1}{\left( \pi - x \right)^2}\]


\[\lim_{x \to \frac{\pi}{6}} \frac{\cot^2 x - 3}{cosec x - 2}\]


\[\lim_{x \to \pi} \frac{1 + \cos x}{\tan^2 x}\] 


\[\lim_{x \to \frac{\pi}{4}} \frac{{cosec}^2 x - 2}{\cot x - 1}\]


\[\lim_{x \to \frac{\pi}{4}} \frac{2 - {cosec}^2 x}{1 - \cot x}\] 


\[\lim_{x \to \pi} \frac{\sqrt{2 + \cos x} - 1}{\left( \pi - x \right)^2}\] 


\[\lim_{x \to 0} \frac{\log \left( a + x \right) - \log a}{x}\]


\[\lim_{x \to 0^+} \left\{ 1 + \tan^2 \sqrt{x} \right\}^{1/2x}\]


Write the value of \[\lim_{x \to 0^-} \left[ x \right] .\]


\[\lim_{x \to 0^-} \frac{\sin x}{\sqrt{x}} .\] 


\[\lim_{x \to 1} \frac{\sin \pi x}{x - 1}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{x}\] is equal to 


Evaluate the following limits: `lim_(x -> 0)[((1 - x)^8 - 1)/((1 - x)^2 - 1)]`


`1/(ax^2 + bx + c)`


Evaluate the following limits: `lim_(x ->3) [sqrt(x + 6)/x]`


Evaluate the following limit:

`lim_(x->3)[sqrt(x+6)/x]`


Evaluate the following limits: `lim_(x -> 3) [sqrt(x + 6)/x]`


Evaluate the following limit:

`lim_(x->7)[((root(3)(x) - root(3)(7))(root(3)(x) + root(3)(7)))/(x - 7)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×