Advertisements
Advertisements
प्रश्न
Evaluate the following limit:
\[\lim_{x \to \pi} \frac{1 - \sin\frac{x}{2}}{\cos\frac{x}{2}\left( \cos\frac{x}{4} - \sin\frac{x}{4} \right)}\]
उत्तर
\[\lim_{x \to \pi} \frac{1 - \sin\frac{x}{2}}{\cos\frac{x}{2}\left( \cos\frac{x}{4} - \sin\frac{x}{4} \right)}\]
Put
\[x = \pi + h\] When \[x \to \pi, h \to 0\]
\[\therefore \lim_{x \to \pi} \frac{1 - \sin\frac{x}{2}}{\cos\frac{x}{2}\left( \cos\frac{x}{4} - \sin\frac{x}{4} \right)}\]
\[ = \lim_{h \to 0} \frac{1 - \sin\left( \frac{\pi + h}{2} \right)}{\cos\left( \frac{\pi + h}{2} \right)\left[ \cos\left( \frac{\pi + h}{4} \right) - \sin\left( \frac{\pi + h}{4} \right) \right]}\]
\[ = \lim_{h \to 0} \frac{1 - \sin\left( \frac{\pi}{2} + \frac{h}{2} \right)}{\cos\left( \frac{\pi}{2} + \frac{h}{2} \right)\left[ \cos\left( \frac{\pi}{4} + \frac{h}{4} \right) - \sin\left( \frac{\pi}{4} + \frac{h}{4} \right) \right]}\]
\[ = \lim_{h \to 0} \frac{1 - \cos\left( \frac{h}{2} \right)}{- \sin\left( \frac{h}{2} \right)\left[ \left( \cos\frac{\pi}{4}\cos\frac{h}{4} - \sin\frac{\pi}{4}\sin\frac{h}{4} \right) - \left( \sin\frac{\pi}{4}\cos\frac{h}{4} + \cos\frac{\pi}{4}\sin\frac{h}{4} \right) \right]}\]
\[= \lim_{h \to 0} \frac{2 \sin^2 \frac{h}{4}}{- 2\sin\frac{h}{4}\cos\frac{h}{4}\left( \frac{1}{\sqrt{2}}\cos\frac{h}{4} - \frac{1}{\sqrt{2}}\sin\frac{h}{4} - \frac{1}{\sqrt{2}}\cos\frac{h}{4} - \frac{1}{\sqrt{2}}\sin\frac{h}{4} \right)}\]
\[ = \lim_{h \to 0} \frac{\sin\frac{h}{4}}{- \cos\frac{h}{4} \times \left( - \sqrt{2}\sin\frac{h}{4} \right)}\]
\[ = \frac{1}{\sqrt{2}} \times \frac{1}{\lim_{h \to 0} \cos\frac{h}{4}}\]
\[ = \frac{1}{\sqrt{2}} \times 1 \left( \lim_\theta \to 0 \cos\theta = 1 \right)\]
\[ = \frac{1}{\sqrt{2}}\]
APPEARS IN
संबंधित प्रश्न
\[\lim_{x \to - 1/2} \frac{8 x^3 + 1}{2x + 1}\]
\[\lim_{x \to 5} \frac{x^2 - 9x + 20}{x^2 - 6x + 5}\]
\[\lim_{x \to \sqrt{3}} \frac{x^4 - 9}{x^2 + 4\sqrt{3}x - 15}\]
\[\lim_{x \to 1} \frac{x^3 + 3 x^2 - 6x + 2}{x^3 + 3 x^2 - 3x - 1}\]
\[\lim_{x \to a} \frac{x^{2/7} - a^{2/7}}{x - a}\]
\[\lim_{x \to \infty} \sqrt{x^2 + cx - x}\]
\[\lim_{x \to \infty} \sqrt{x^2 + 7x - x}\]
\[\lim_{x \to \infty} \left[ x\left\{ \sqrt{x^2 + 1} - \sqrt{x^2 - 1} \right\} \right]\]
\[\lim_{x \to 0} \left[ \frac{x^2}{\sin x^2} \right]\]
\[\lim_{x \to 0} \frac{3 \sin 2x + 2x}{3x + 2 \tan 3x}\]
\[\lim_{x \to 0} \frac{\cos 3x - \cos 7x}{x^2}\]
\[\lim_{x \to 0} \frac{x \cos x + 2 \sin x}{x^2 + \tan x}\]
\[\lim_{x \to 0} \frac{\sin 3x - \sin x}{\sin x}\]
\[\lim_{x \to 0} \frac{x \tan x}{1 - \cos x}\]
\[\lim_{x \to 0} \frac{x^3 \cot x}{1 - \cos x}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}{x}\]
\[\lim_{x \to 0} \frac{\sin 3x + 7x}{4x + \sin 2x}\]
\[\lim_{x \to 0} \frac{\tan 2x - \sin 2x}{x^3}\]
\[\lim_{x \to \pi} \frac{\sqrt{5 + \cos x} - 2}{\left( \pi - x \right)^2}\]
\[\lim_{x \to - 1} \frac{x^2 - x - 2}{\left( x^2 + x \right) + \sin \left( x + 1 \right)}\]
\[\lim_{x \to 2} \frac{x^2 - x - 2}{x^2 - 2x + \sin \left( x - 2 \right)}\]
\[\lim_{n \to \infty} \left( 1 + \frac{x}{n} \right)^n\]
\[\lim_{x \to 0} \left( \cos x + \sin x \right)^{1/x}\]
Write the value of \[\lim_{x \to 1^-} x - \left[ x \right] .\]
\[\lim_{x \to \infty} \frac{\sin x}{x} .\]
\[\lim_{x \to 0^-} \frac{\sin x}{\sqrt{x}} .\]
\[\lim_{x \to 0} \frac{x}{\tan x} is\]
\[\lim_{x \to \infty} \frac{\sin x}{x}\] equals
\[\lim_{x \to \infty} \frac{\sqrt{x^2 - 1}}{2x + 1}\]
\[\lim_{n \to \infty} \frac{n!}{\left( n + 1 \right)! + n!}\] is equal to
If α is a repeated root of ax2 + bx + c = 0, then \[\lim_{x \to \alpha} \frac{\tan \left( a x^2 + bx + c \right)}{\left( x - \alpha \right)^2}\]
\[\lim_{x \to 0} \frac{\left| \sin x \right|}{x}\]
Evaluate the following Limits: `lim_(x -> "a") ((x + 2)^(5/3) - ("a" + 2)^(5/3))/(x - "a")`
Which of the following function is not continuous at x = 0?
Evaluate the following limit :
`lim_(x->3)[sqrt(x+6)/x]`
Evaluate the following limit :
`lim_(x->7)[[(root3(x)- root3(7))(root3(x) + root3(7)))/(x-7)]`
Evaluate the following limit.
`lim_(x->5)[(x^3 -125)/(x^5 - 3125)]`
Evaluate the Following limit:
`lim_ (x -> 3) [sqrt (x + 6)/ x]`