मराठी

Evaluate the Following Limit: Lim X → π 1 − Sin X 2 Cos X 2 ( Cos X 4 − Sin X 4 ) - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following limit:

\[\lim_{x \to \pi} \frac{1 - \sin\frac{x}{2}}{\cos\frac{x}{2}\left( \cos\frac{x}{4} - \sin\frac{x}{4} \right)}\]

 

उत्तर

\[\lim_{x \to \pi} \frac{1 - \sin\frac{x}{2}}{\cos\frac{x}{2}\left( \cos\frac{x}{4} - \sin\frac{x}{4} \right)}\]

Put

\[x = \pi + h\] When \[x \to \pi, h \to 0\] 

\[\therefore \lim_{x \to \pi} \frac{1 - \sin\frac{x}{2}}{\cos\frac{x}{2}\left( \cos\frac{x}{4} - \sin\frac{x}{4} \right)}\]
\[ = \lim_{h \to 0} \frac{1 - \sin\left( \frac{\pi + h}{2} \right)}{\cos\left( \frac{\pi + h}{2} \right)\left[ \cos\left( \frac{\pi + h}{4} \right) - \sin\left( \frac{\pi + h}{4} \right) \right]}\]
\[ = \lim_{h \to 0} \frac{1 - \sin\left( \frac{\pi}{2} + \frac{h}{2} \right)}{\cos\left( \frac{\pi}{2} + \frac{h}{2} \right)\left[ \cos\left( \frac{\pi}{4} + \frac{h}{4} \right) - \sin\left( \frac{\pi}{4} + \frac{h}{4} \right) \right]}\]
\[ = \lim_{h \to 0} \frac{1 - \cos\left( \frac{h}{2} \right)}{- \sin\left( \frac{h}{2} \right)\left[ \left( \cos\frac{\pi}{4}\cos\frac{h}{4} - \sin\frac{\pi}{4}\sin\frac{h}{4} \right) - \left( \sin\frac{\pi}{4}\cos\frac{h}{4} + \cos\frac{\pi}{4}\sin\frac{h}{4} \right) \right]}\]

\[= \lim_{h \to 0} \frac{2 \sin^2 \frac{h}{4}}{- 2\sin\frac{h}{4}\cos\frac{h}{4}\left( \frac{1}{\sqrt{2}}\cos\frac{h}{4} - \frac{1}{\sqrt{2}}\sin\frac{h}{4} - \frac{1}{\sqrt{2}}\cos\frac{h}{4} - \frac{1}{\sqrt{2}}\sin\frac{h}{4} \right)}\]
\[ = \lim_{h \to 0} \frac{\sin\frac{h}{4}}{- \cos\frac{h}{4} \times \left( - \sqrt{2}\sin\frac{h}{4} \right)}\]
\[ = \frac{1}{\sqrt{2}} \times \frac{1}{\lim_{h \to 0} \cos\frac{h}{4}}\]
\[ = \frac{1}{\sqrt{2}} \times 1 \left( \lim_\theta \to 0 \cos\theta = 1 \right)\]
\[ = \frac{1}{\sqrt{2}}\]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 29: Limits - Exercise 29.8 [पृष्ठ ६३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 29 Limits
Exercise 29.8 | Q 38 | पृष्ठ ६३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\lim_{x \to - 1/2} \frac{8 x^3 + 1}{2x + 1}\] 


\[\lim_{x \to 5} \frac{x^2 - 9x + 20}{x^2 - 6x + 5}\] 


\[\lim_{x \to \sqrt{3}} \frac{x^4 - 9}{x^2 + 4\sqrt{3}x - 15}\]


\[\lim_{x \to 1} \frac{x^3 + 3 x^2 - 6x + 2}{x^3 + 3 x^2 - 3x - 1}\]


\[\lim_{x \to a} \frac{x^{2/7} - a^{2/7}}{x - a}\] 


\[\lim_{x \to \infty} \sqrt{x^2 + cx - x}\] 


\[\lim_{x \to \infty} \sqrt{x^2 + 7x - x}\] 


\[\lim_{x \to \infty} \left[ x\left\{ \sqrt{x^2 + 1} - \sqrt{x^2 - 1} \right\} \right]\] 


\[\lim_{x \to 0} \left[ \frac{x^2}{\sin x^2} \right]\] 


\[\lim_{x \to 0} \frac{3 \sin 2x + 2x}{3x + 2 \tan 3x}\] 


\[\lim_{x \to 0} \frac{\cos 3x - \cos 7x}{x^2}\] 


\[\lim_{x \to 0} \frac{x \cos x + 2 \sin x}{x^2 + \tan x}\] 


\[\lim_{x \to 0} \frac{\sin 3x - \sin x}{\sin x}\] 


\[\lim_{x \to 0} \frac{x \tan x}{1 - \cos x}\]


\[\lim_{x \to 0} \frac{x^3 \cot x}{1 - \cos x}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}{x}\] 


\[\lim_{x \to 0} \frac{\sin 3x + 7x}{4x + \sin 2x}\]


\[\lim_{x \to 0} \frac{\tan 2x - \sin 2x}{x^3}\]


\[\lim_{x \to \pi} \frac{\sqrt{5 + \cos x} - 2}{\left( \pi - x \right)^2}\] 


\[\lim_{x \to - 1} \frac{x^2 - x - 2}{\left( x^2 + x \right) + \sin \left( x + 1 \right)}\]


\[\lim_{x \to 2} \frac{x^2 - x - 2}{x^2 - 2x + \sin \left( x - 2 \right)}\] 


\[\lim_{n \to \infty} \left( 1 + \frac{x}{n} \right)^n\]


\[\lim_{x \to 0} \left( \cos x + \sin x \right)^{1/x}\]


Write the value of \[\lim_{x \to 1^-} x - \left[ x \right] .\] 


\[\lim_{x \to \infty} \frac{\sin x}{x} .\] 


\[\lim_{x \to 0^-} \frac{\sin x}{\sqrt{x}} .\] 


\[\lim_{x \to 0} \frac{x}{\tan x} is\] 


\[\lim_{x \to \infty} \frac{\sin x}{x}\] equals 


\[\lim_{x \to \infty} \frac{\sqrt{x^2 - 1}}{2x + 1}\] 


\[\lim_{n \to \infty} \frac{n!}{\left( n + 1 \right)! + n!}\]  is equal to


If α is a repeated root of ax2 + bx + c = 0, then \[\lim_{x \to \alpha} \frac{\tan \left( a x^2 + bx + c \right)}{\left( x - \alpha \right)^2}\]


\[\lim_{x \to 0} \frac{\left| \sin x \right|}{x}\]


Evaluate the following Limits: `lim_(x -> "a") ((x + 2)^(5/3) - ("a" + 2)^(5/3))/(x - "a")`


Which of the following function is not continuous at x = 0?


Evaluate the following limit :

`lim_(x->3)[sqrt(x+6)/x]`


Evaluate the following limit :

`lim_(x->7)[[(root3(x)- root3(7))(root3(x) + root3(7)))/(x-7)]`


Evaluate the following limit.

`lim_(x->5)[(x^3 -125)/(x^5 - 3125)]`


Evaluate the Following limit: 

`lim_ (x -> 3) [sqrt (x + 6)/ x]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×