Advertisements
Advertisements
प्रश्न
\[\lim_{x \to - 1} \frac{x^2 - x - 2}{\left( x^2 + x \right) + \sin \left( x + 1 \right)}\]
उत्तर
\[\lim_{x \to - 1} \frac{x^2 - x - 2}{x^2 + x + \sin \left( x + 1 \right)}\]
\[ = \lim_{x \to - 1} \frac{\left( x - 2 \right) \left( x + 1 \right)}{x\left( x + 1 \right) + \sin \left( x + 1 \right)}\]
\[Let y = x + 1\]
\[If x \to - 1, then y \to 0 . \]
\[ = \lim_{y \to 0} \frac{\left( y - 3 \right)y}{\left( y - 1 \right)y + \sin y}\]
\[\text{ Dividing the numerator and the denominator by } y:\]
\[ = \lim_{y \to 0} \frac{\left( y - 3 \right)}{\left( y - 1 \right) + \frac{\sin y}{y}}\]
\[ = \frac{0 - 3}{\left( 0 - 1 \right) + 1}\]
\[ \Rightarrow \frac{- 3}{0} = \infty\]
APPEARS IN
संबंधित प्रश्न
Show that \[\lim_{x \to 0} \frac{x}{\left| x \right|}\] does not exist.
\[\lim_{x \to 3} \frac{\sqrt{2x + 3}}{x + 3}\]
\[\lim_{x \to - 1}{\left( 4 x^2 + 2 \right)}\]
\[\lim_{x \to 0} \frac{3x + 1}{x + 3}\]
\[\lim_{x \to \sqrt{3}} \frac{x^2 - 3}{x^2 + 3 \sqrt{3}x - 12}\]
\[\lim_{x \to 1} \frac{1 - x^{- 1/3}}{1 - x^{- 2/3}}\]
\[\lim_{x \to - 1/2} \frac{8 x^3 + 1}{2x + 1}\]
\[\lim_{x \to 1} \frac{x^{15} - 1}{x^{10} - 1}\]
If \[\lim_{x \to 3} \frac{x^n - 3^n}{x - 3} = 108,\] find the value of n.
\[\lim_{x \to \infty} \frac{5 x^3 - 6}{\sqrt{9 + 4 x^6}}\]
\[\lim_{x \to \infty} \sqrt{x^2 + cx - x}\]
\[\lim_{x \to \infty} \frac{\sqrt{x^2 + a^2} - \sqrt{x^2 + b^2}}{\sqrt{x^2 + c^2} - \sqrt{x^2 + d^2}}\]
\[\lim_{x \to \infty} \left[ x\left\{ \sqrt{x^2 + 1} - \sqrt{x^2 - 1} \right\} \right]\]
Evaluate: \[\lim_{n \to \infty} \frac{1 . 2 + 2 . 3 + 3 . 4 + . . . + n\left( n + 1 \right)}{n^3}\]
\[\lim_{x \to 0} \frac{\sin x^0}{x}\]
\[\lim_{x \to 0} \left[ \frac{x^2}{\sin x^2} \right]\]
\[\lim_{x \to 0} \frac{\tan mx}{\tan nx}\]
\[\lim_{x \to 0} \frac{x \cos x + 2 \sin x}{x^2 + \tan x}\]
\[\lim_{x \to 0} \frac{\sin 3x - \sin x}{\sin x}\]
\[\lim_{x \to 0} \frac{\sin 5x - \sin 3x}{\sin x}\]
\[\lim_{x \to 0} \frac{x^2 - \tan 2x}{\tan x}\]
\[\lim_{x \to 0} \frac{x^2 + 1 - \cos x}{x \sin x}\]
\[\lim_{x \to 0} \frac{1 - \cos 2x}{3 \tan^2 x}\]
Evaluate the following limits:
\[\lim_{x \to 0} \frac{2\sin x - \sin2x}{x^3}\]
\[\lim_{x \to 0} \frac{cosec x - \cot x}{x}\]
\[\lim_{x \to 0} \frac{3 \sin x - \sin 3x}{x^3}\]
Evaluate the following limit:
\[\lim_{h \to 0} \frac{\left( a + h \right)^2 \sin\left( a + h \right) - a^2 \sin a}{h}\]
\[\lim_{x \to 1} \left( 1 - x \right) \tan \left( \frac{\pi x}{2} \right)\]
\[\lim_{x \to \infty} \frac{\sin x}{x} .\]
Write the value of \[\lim_{x \to 2} \frac{\left| x - 2 \right|}{x - 2} .\]
\[\lim 2_{h \to 0} \left\{ \frac{\sqrt{3} \sin \left( \pi/6 + h \right) - \cos \left( \pi/6 + h \right)}{\sqrt{3} h \left( \sqrt{3} \cos h - \sin h \right)} \right\}\]
\[\lim_{x \to 0} \frac{8}{x^8}\left\{ 1 - \cos \frac{x^2}{2} - \cos \frac{x^2}{4} + \cos \frac{x^2}{2} \cos \frac{x^2}{4} \right\}\] is equal to
If \[f\left( x \right) = \begin{cases}\frac{\sin\left[ x \right]}{\left[ x \right]}, & \left[ x \right] \neq 0 \\ 0, & \left[ x \right] = 0\end{cases}\] where denotes the greatest integer function, then \[\lim_{x \to 0} f\left( x \right)\]
`1/(ax^2 + bx + c)`
Evaluate the following limit :
`lim_(x->3)[sqrt(x+6)/x]`
Evaluate the following limit :
`lim_(x->7)[[(root3(x)- root3(7))(root3(x) + root3(7)))/(x-7)]`
Evaluate the Following limit:
`lim_(x->7)[((root(3)(x)-root(3)(7))(root(3)(x)+root(3)(7)))/(x-7)]`
Evaluate the Following limit:
`lim_ (x -> 3) [sqrt (x + 6)/ x]`
Evaluate the following limit:
`\underset{x->5}{lim}[(x^3 - 125)/(x^5 - 3125)]`