Advertisements
Advertisements
प्रश्न
\[\lim_{x \to \pi} \frac{\sqrt{2 + \cos x} - 1}{\left( \pi - x \right)^2}\]
उत्तर
\[\lim_{x \to \pi} \left[ \frac{\sqrt{2 + \cos x} - 1}{\left( \pi - x \right)^2} \right]\]
\[\text{ Rationalising the numerator, we get }: \]
\[ \lim_{x \to \pi} \left[ \frac{\left( \sqrt{2 + \cos x} - 1 \right) \times \left( \sqrt{2 + \cos x} + 1 \right)}{\left( \pi - x \right)^2 \left( \sqrt{2 + \cos x} + 1 \right)} \right]\]
\[ = \lim_{x \to \pi} \left[ \frac{2 + \cos x - 1}{\left( \pi - x \right)^2 \left( \sqrt{2 + \cos x} + 1 \right)} \right]\]
\[ = \lim_{x \to \pi} \left[ \frac{1 + \cos x}{\left( \pi - x \right)^2 \left[ \sqrt{2 + \cos x} + 1 \right]} \right]\]
Let x = π \[-\]h
when x → π, then h → 0
\[ = \lim_{h \to 0} \left[ \frac{1 - \cos h}{h^2 \left[ \sqrt{2 - \cos h} + 1 \right]} \right] \left\{ \because \cos \left( \pi - \theta \right) = - \cos \theta \right\}\]
\[ = \lim_{h \to 0} \left[ \frac{2 \sin^2 \left( \frac{h}{2} \right)}{4 \times \frac{h^2}{4}\left[ \sqrt{2 - \cos h} + 1 \right]} \right]\]
\[ = \frac{1}{2} \lim_{h \to 0} \left[ \left( \frac{\sin \frac{h}{2}}{\frac{h}{2}} \right)^2 \times \frac{1}{\left[ \sqrt{2 - \cos h} + 1 \right]} \right]\]
\[ = \frac{1}{2} \times 1 \times \frac{1}{\left( \sqrt{2 - \cos 0} + 1 \right)}\]
\[ = \frac{1}{2} \times \frac{1}{\left( \sqrt{1} + 1 \right)}\]
\[ = \frac{1}{2 \times 2}\]
\[ = \frac{1}{4}\]
APPEARS IN
संबंधित प्रश्न
\[\lim_{x \to 2} \frac{x^4 - 16}{x - 2}\]
\[\lim_{x \to \sqrt{3}} \frac{x^2 - 3}{x^2 + 3 \sqrt{3}x - 12}\]
\[\lim_{x \to 0} \frac{\left( a + x \right)^2 - a^2}{x}\]
\[\lim_{x \to 3} \left( \frac{1}{x - 3} - \frac{3}{x^2 - 3x} \right)\]
\[\lim_{x \to a} \frac{x^{2/3} - a^{2/3}}{x^{3/4} - a^{3/4}}\]
If \[\lim_{x \to a} \frac{x^5 - a^5}{x - a} = 405,\]find all possible values of a.
\[\lim_{x \to \infty} \frac{3 x^{- 1} + 4 x^{- 2}}{5 x^{- 1} + 6 x^{- 2}}\]
\[\lim_{x \to 0} \frac{\sin x^0}{x}\]
\[\lim_{x \to 0} \frac{3 \sin x - 4 \sin^3 x}{x}\]
\[\lim_\theta \to 0 \frac{\sin 3\theta}{\tan 2\theta}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}{x}\]
\[\lim_{x \to 0} \frac{1 - \cos 4x}{x^2}\]
\[\lim_{x \to 0} \frac{ax + x \cos x}{b \sin x}\]
Evaluate the following limits:
\[\lim_{x \to 0} \frac{2\sin x - \sin2x}{x^3}\]
\[\lim_{x \to 0} \frac{\sin 3x + 7x}{4x + \sin 2x}\]
\[\lim_{x \to 0} \frac{\sin ax + bx}{ax + \sin bx}\]
\[\lim_{x \to 0} \left( cosec x - \cot x \right)\]
Evaluate the following limit:
\[\lim_{h \to 0} \frac{\left( a + h \right)^2 \sin\left( a + h \right) - a^2 \sin a}{h}\]
\[\lim_{x \to \frac{\pi}{2}} \frac{\sin 2x}{\cos x}\]
\[\lim_{x \to \frac{\pi}{2}} \frac{\cos^2 x}{1 - \sin x}\]
\[\lim_{x \to a} \frac{\cos x - \cos a}{x - a}\]
\[\lim_{x \to \pi} \frac{\sqrt{5 + \cos x} - 2}{\left( \pi - x \right)^2}\]
\[\lim_{x \to a} \frac{\cos \sqrt{x} - \cos \sqrt{a}}{x - a}\]
\[\lim_{x \to 1} \frac{1 - x^2}{\sin \pi x}\]
\[\lim_{x \to \frac{\pi}{2}} \frac{\left( \frac{\pi}{2} - x \right) \sin x - 2 \cos x}{\left( \frac{\pi}{2} - x \right) + \cot x}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{2 - {cosec}^2 x}{1 - \cot x}\]
\[\lim_{n \to \infty} \left( 1 + \frac{x}{n} \right)^n\]
Write the value of \[\lim_{x \to 0^-} \left[ x \right] .\]
Write the value of \[\lim_{x \to 1^-} x - \left[ x \right] .\]
\[\lim_{x \to \pi} \frac{\sin x}{x - \pi} .\]
\[\lim_{x \to 0} \frac{\sqrt{1 - \cos 2x}}{x} .\]
\[\lim_{n \to \infty} \frac{1 - 2 + 3 - 4 + 5 - 6 + . . . . + \left( 2n - 1 \right) - 2n}{\sqrt{n^2 + 1} + \sqrt{n^2 - 1}}\] is equal to
\[\lim_{x \to 1} \left[ x - 1 \right]\] where [.] is the greatest integer function, is equal to
If \[f\left( x \right) = \begin{cases}\frac{\sin\left[ x \right]}{\left[ x \right]}, & \left[ x \right] \neq 0 \\ 0, & \left[ x \right] = 0\end{cases}\] where denotes the greatest integer function, then \[\lim_{x \to 0} f\left( x \right)\]
Evaluate the following limits: `lim_(x -> 0)[(root(3)(1 + x) - sqrt(1 + x))/x]`
`lim_(x->3) (x^5 - 243)/(x^3 - 27)` = ?
If f(x) = `{{:(1 if x "is rational"),(-1 if x "is rational"):}` is continuous on ______.
Evaluate the following limit:
`lim_(x->7)[((root(3)(x) - root(3)(7))(root(3)(x) + root(3)(7)))/(x - 7)]`