Advertisements
Advertisements
Question
\[\lim_{x \to \pi} \frac{\sqrt{2 + \cos x} - 1}{\left( \pi - x \right)^2}\]
Solution
\[\lim_{x \to \pi} \left[ \frac{\sqrt{2 + \cos x} - 1}{\left( \pi - x \right)^2} \right]\]
\[\text{ Rationalising the numerator, we get }: \]
\[ \lim_{x \to \pi} \left[ \frac{\left( \sqrt{2 + \cos x} - 1 \right) \times \left( \sqrt{2 + \cos x} + 1 \right)}{\left( \pi - x \right)^2 \left( \sqrt{2 + \cos x} + 1 \right)} \right]\]
\[ = \lim_{x \to \pi} \left[ \frac{2 + \cos x - 1}{\left( \pi - x \right)^2 \left( \sqrt{2 + \cos x} + 1 \right)} \right]\]
\[ = \lim_{x \to \pi} \left[ \frac{1 + \cos x}{\left( \pi - x \right)^2 \left[ \sqrt{2 + \cos x} + 1 \right]} \right]\]
Let x = π \[-\]h
when x → π, then h → 0
\[ = \lim_{h \to 0} \left[ \frac{1 - \cos h}{h^2 \left[ \sqrt{2 - \cos h} + 1 \right]} \right] \left\{ \because \cos \left( \pi - \theta \right) = - \cos \theta \right\}\]
\[ = \lim_{h \to 0} \left[ \frac{2 \sin^2 \left( \frac{h}{2} \right)}{4 \times \frac{h^2}{4}\left[ \sqrt{2 - \cos h} + 1 \right]} \right]\]
\[ = \frac{1}{2} \lim_{h \to 0} \left[ \left( \frac{\sin \frac{h}{2}}{\frac{h}{2}} \right)^2 \times \frac{1}{\left[ \sqrt{2 - \cos h} + 1 \right]} \right]\]
\[ = \frac{1}{2} \times 1 \times \frac{1}{\left( \sqrt{2 - \cos 0} + 1 \right)}\]
\[ = \frac{1}{2} \times \frac{1}{\left( \sqrt{1} + 1 \right)}\]
\[ = \frac{1}{2 \times 2}\]
\[ = \frac{1}{4}\]
APPEARS IN
RELATED QUESTIONS
\[\lim_{x \to 1} \frac{\sqrt{x + 8}}{\sqrt{x}}\]
\[\lim_{x \to 1} \frac{1 + \left( x - 1 \right)^2}{1 + x^2}\]
\[\lim_{x \to 3} \frac{x^2 - 9}{x + 2}\]
\[\lim_{x \to 5} \frac{x^3 - 125}{x^2 - 7x + 10}\]
\[\lim_{x \to \sqrt{3}} \frac{x^4 - 9}{x^2 + 4\sqrt{3}x - 15}\]
Evaluate the following limit:
\[\lim_{x \to 1} \frac{x^7 - 2 x^5 + 1}{x^3 - 3 x^2 + 2}\]
\[\lim_{x \to \infty} \frac{3 x^3 - 4 x^2 + 6x - 1}{2 x^3 + x^2 - 5x + 7}\]
\[\lim_{x \to - \infty} \left( \sqrt{4 x^2 - 7x} + 2x \right)\]
Evaluate: \[\lim_{n \to \infty} \frac{1 . 2 + 2 . 3 + 3 . 4 + . . . + n\left( n + 1 \right)}{n^3}\]
\[\lim_{x \to 0} \frac{\tan^2 3x}{x^2}\]
\[\lim_{x \to 0} \frac{\sin \left( a + x \right) + \sin \left( a - x \right) - 2 \sin a}{x \sin x}\]
\[\lim_{x \to 0} \frac{\sin 2x \left( \cos 3x - \cos x \right)}{x^3}\]
\[\lim_{x \to 0} \frac{x \tan x}{1 - \cos 2x}\]
\[\lim_{x \to 0} \frac{ax + x \cos x}{b \sin x}\]
\[\lim_{n \to \infty} 2^{n - 1} \sin \left( \frac{a}{2^n} \right)\]
\[\lim_{x \to \pi} \frac{1 + \cos x}{\tan^2 x}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} - \cos x - \sin x}{\left( 4x - \pi \right)^2}\]
\[\lim_{x \to \frac{\pi}{2}} \frac{\left( \frac{\pi}{2} - x \right) \sin x - 2 \cos x}{\left( \frac{\pi}{2} - x \right) + \cot x}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{{cosec}^2 x - 2}{\cot x - 1}\]
\[\lim_{x \to 0} \left( \cos x + a \sin bx \right)^{1/x}\]
Write the value of \[\lim_{x \to 0^-} \left[ x \right] .\]
Write the value of \[\lim_{x \to 0^+} \left[ x \right] .\]
\[\lim_{x \to 0} \frac{\sqrt{1 - \cos 2x}}{x} .\]
Write the value of \[\lim_{x \to 0^+} \left[ x \right] .\]
\[\lim_{x \to \infty} \frac{\sin x}{x} .\]
\[\lim_{x \to 0} \frac{x}{\tan x} is\]
If \[\lim_{x \to 1} \frac{x + x^2 + x^3 + . . . + x^n - n}{x - 1} = 5050\] then n equal
\[\lim_{x \to \pi/3} \frac{\sin \left( \frac{\pi}{3} - x \right)}{2 \cos x - 1}\] is equal to
The value of \[\lim_{x \to \pi/2} \left( \sec x - \tan x \right)\]is
The value of \[\lim_{x \to \infty} \frac{\left( x + 1 \right)^{10} + \left( x + 2 \right)^{10} + . . . + \left( x + 100 \right)^{10}}{x^{10} + {10}^{10}}\] is
\[\lim_{x \to 0} \frac{\left| \sin x \right|}{x}\]
Evaluate the following limits: if `lim_(x -> 5)[(x^"k" - 5^"k")/(x - 5)]` = 500, find all possible values of k.
Evaluate the following limits: `lim_(x -> 0)[(root(3)(1 + x) - sqrt(1 + x))/x]`
Evaluate the following limits: `lim_(y -> 1) [(2y - 2)/(root(3)(7 + y) - 2)]`
if `lim_(x -> 2) (x^"n"- 2^"n")/(x - 2)` = 80 then find the value of n.
`1/(ax^2 + bx + c)`
If f(x) = `{{:(1 if x "is rational"),(-1 if x "is rational"):}` is continuous on ______.
Evaluate the following limit :
`lim_(x->5)[(x^3-125)/(x^5-3125)]`
Evaluate the following limits: `lim_(x -> 3) [sqrt(x + 6)/x]`
Evaluate the following limit.
`lim_(x->3)[sqrt(x + 6)/x]`