मराठी

Lim X → 0 Sec 5 X − Sec 3 X Sec 3 X − Sec X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\lim_{x \to 0} \frac{\sec 5x - \sec 3x}{\sec 3x - \sec x}\]

उत्तर

\[\lim_{x \to 0} \left[ \frac{\sec 5x - \sec 3x}{\sec 3x - \sec x} \right]\]

\[= \lim_{x \to 0} \left[ \frac{\frac{1}{\cos 5x}\frac{1}{\cos 3x}}{\frac{1}{\cos 3x} - \frac{1}{\cos x}} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\cos 3x - \cos 5x}{\cos 5x \cos 3x\left\{ \frac{\cos x - \cos 3x}{\cos x \cos 3x} \right\}} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\left( \cos3x - \cos5x \right)\cos x}{\cos 5x\left\{ \cos x - \cos3x \right\}} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{- 2\sin\left( \frac{3x + 5x}{2} \right)\sin\left( \frac{3x - 5x}{2} \right) \times \cos x}{\cos\left( 5x \right)\left[ - 2\sin\left( \frac{x + 3x}{2} \right)\sin\left( \frac{x - 3x}{2} \right) \right]} \right] \left[ \because cosC - cosD = - 2\sin\left( \frac{C + D}{2} \right)\sin\left( \frac{C - D}{2} \right) \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\sin\left( 4x \right) \times \sin\left( - x \right) \times \cos x}{\cos\left( 5x \right) \times \sin\left( 2x \right) \times \sin\left( - x \right)} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\sin\left( 4x \right)}{4x} \times \frac{4x}{\frac{\sin\left( 2x \right)}{2x} \times 2x} \times \frac{\cos x}{\cos5x} \right]\]
\[ = \frac{4}{2}\frac{\cos0}{\cos0}\]
\[ = 2\]
\[\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 29: Limits - Exercise 29.7 [पृष्ठ ५०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 29 Limits
Exercise 29.7 | Q 29 | पृष्ठ ५०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\lim_{x \to 1} \frac{x^2 + 1}{x + 1}\] 


\[\lim_{x \to 1} \frac{1 + \left( x - 1 \right)^2}{1 + x^2}\]


\[\lim_{x \to - 1/2} \frac{8 x^3 + 1}{2x + 1}\] 


\[\lim_{x \to \sqrt{2}} \frac{x^2 - 2}{x^2 + \sqrt{2}x - 4}\]


\[\lim_{x \to 1} \left( \frac{1}{x - 1} - \frac{2}{x^2 - 1} \right)\]


\[\lim_{x \to 1} \frac{x^3 + 3 x^2 - 6x + 2}{x^3 + 3 x^2 - 3x - 1}\]


\[\lim_{x \to 2} \left[ \frac{1}{x - 2} - \frac{2\left( 2x - 3 \right)}{x^3 - 3 x^2 + 2x} \right]\] 


\[\lim_{x \to 1} \left\{ \frac{x - 2}{x^2 - x} - \frac{1}{x^3 - 3 x^2 + 2x} \right\}\] 


\[\lim_{x \to a} \frac{\left( x + 2 \right)^{5/2} - \left( a + 2 \right)^{5/2}}{x - a}\] 


\[\lim_{x \to - 1} \frac{x^3 + 1}{x + 1}\] 


\[\lim_{x \to \infty} \frac{\left( 3x - 1 \right) \left( 4x - 2 \right)}{\left( x + 8 \right) \left( x - 1 \right)}\] 


\[\lim_{x \to \infty} \frac{x}{\sqrt{4 x^2 + 1} - 1}\] 


\[\lim_{x \to 0} \frac{\sin 3x}{5x}\] 


\[\lim_{x \to 0} \frac{1 - \cos mx}{x^2}\] 


\[\lim_{x \to 0} \frac{3 \sin^2 x - 2 \sin x^2}{3 x^2}\] 


Evaluate the following limits: 

\[\lim_{x \to 0} \frac{\cos ax - \cos bx}{\cos cx - 1}\] 


\[\lim_{x \to \frac{\pi}{2}} \frac{\cot x}{\frac{\pi}{2} - x}\]


\[\lim_{x \to a} \frac{\cos x - \cos a}{\sqrt{x} - \sqrt{a}}\]


\[\lim_{x \to \pi} \frac{\sqrt{5 + \cos x} - 2}{\left( \pi - x \right)^2}\] 


\[\lim_{x \to 1} \frac{1 - x^2}{\sin \pi x}\]


\[\lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{1 - \sqrt{2} \sin x}\] 


\[\lim_{x \to \frac{\pi}{2}} \frac{\left( \frac{\pi}{2} - x \right) \sin x - 2 \cos x}{\left( \frac{\pi}{2} - x \right) + \cot x}\]


\[\lim_{x \to \frac{\pi}{4}} \frac{{cosec}^2 x - 2}{\cot x - 1}\]


\[\lim_{x \to 0} \frac{\log \left( 3 + x \right) - \log \left( 3 - x \right)}{x}\] 


Write the value of \[\lim_{x \to 1^-} x - \left[ x \right] .\] 


Write the value of \[\lim_{x \to 0} \frac{\sin x^\circ}{x} .\]


\[\lim_{x \to  } \frac{1 - \cos 2x}{x} is\]


If \[\lim_{x \to 1} \frac{x + x^2 + x^3 + . . . + x^n - n}{x - 1} = 5050\] then n equal


The value of \[\lim_{n \to \infty} \frac{\left( n + 2 \right)! + \left( n + 1 \right)!}{\left( n + 2 \right)! - \left( n + 1 \right)!}\] is 


\[\lim_{x \to 0} \frac{\left| \sin x \right|}{x}\]


If \[f\left( x \right) = \begin{cases}\frac{\sin\left[ x \right]}{\left[ x \right]}, & \left[ x \right] \neq 0 \\ 0, & \left[ x \right] = 0\end{cases}\]  where  denotes the greatest integer function, then \[\lim_{x \to 0} f\left( x \right)\]  


Evaluate the following limits: `lim_(y -> 1) [(2y - 2)/(root(3)(7 + y) - 2)]`


`1/(ax^2 + bx + c)`


Evaluate the following limit:

`lim_(x->3)[sqrt(x+6)/x]`


Evaluate the following limit.

`lim_(x->3)[sqrt(x + 6)/x]`


Evaluate the Following limit: 

`lim_ (x -> 3) [sqrt (x + 6)/ x]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×