English

Lim X → 0 Sec 5 X − Sec 3 X Sec 3 X − Sec X - Mathematics

Advertisements
Advertisements

Question

\[\lim_{x \to 0} \frac{\sec 5x - \sec 3x}{\sec 3x - \sec x}\]

Solution

\[\lim_{x \to 0} \left[ \frac{\sec 5x - \sec 3x}{\sec 3x - \sec x} \right]\]

\[= \lim_{x \to 0} \left[ \frac{\frac{1}{\cos 5x}\frac{1}{\cos 3x}}{\frac{1}{\cos 3x} - \frac{1}{\cos x}} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\cos 3x - \cos 5x}{\cos 5x \cos 3x\left\{ \frac{\cos x - \cos 3x}{\cos x \cos 3x} \right\}} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\left( \cos3x - \cos5x \right)\cos x}{\cos 5x\left\{ \cos x - \cos3x \right\}} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{- 2\sin\left( \frac{3x + 5x}{2} \right)\sin\left( \frac{3x - 5x}{2} \right) \times \cos x}{\cos\left( 5x \right)\left[ - 2\sin\left( \frac{x + 3x}{2} \right)\sin\left( \frac{x - 3x}{2} \right) \right]} \right] \left[ \because cosC - cosD = - 2\sin\left( \frac{C + D}{2} \right)\sin\left( \frac{C - D}{2} \right) \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\sin\left( 4x \right) \times \sin\left( - x \right) \times \cos x}{\cos\left( 5x \right) \times \sin\left( 2x \right) \times \sin\left( - x \right)} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\sin\left( 4x \right)}{4x} \times \frac{4x}{\frac{\sin\left( 2x \right)}{2x} \times 2x} \times \frac{\cos x}{\cos5x} \right]\]
\[ = \frac{4}{2}\frac{\cos0}{\cos0}\]
\[ = 2\]
\[\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: Limits - Exercise 29.7 [Page 50]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 29 Limits
Exercise 29.7 | Q 29 | Page 50

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\lim_{x \to 1} \frac{\sqrt{x + 8}}{\sqrt{x}}\] 


\[\lim_{x \to 1} \frac{1 + \left( x - 1 \right)^2}{1 + x^2}\]


\[\lim_{x \to 2} \left( 3 - x \right)\] 


\[\lim_{x \to 1} \frac{x^3 + 3 x^2 - 6x + 2}{x^3 + 3 x^2 - 3x - 1}\]


\[\lim_{x \to a} \frac{x^{2/3} - a^{2/3}}{x^{3/4} - a^{3/4}}\] 


If \[\lim_{x \to a} \frac{x^5 - a^5}{x - a} = 405,\]find all possible values of a

 

 


If \[\lim_{x \to a} \frac{x^9 - a^9}{x - a} = \lim_{x \to 5} \left( 4 + x \right),\] find all possible values of a


\[\lim_{x \to \infty} \sqrt{x^2 + cx - x}\] 


\[\lim_{x \to \infty} \sqrt{x^2 + 7x - x}\] 


\[\lim_{x \to \infty} \frac{x}{\sqrt{4 x^2 + 1} - 1}\] 


\[\lim_{x \to \infty} \left[ x\left\{ \sqrt{x^2 + 1} - \sqrt{x^2 - 1} \right\} \right]\] 


\[\lim_{x \to 0} \frac{x^2}{\sin x^2}\] 


\[\lim_{x \to 0} \frac{\sin x \cos x}{3x}\] 


\[\lim_{x \to 0} \frac{\sin x^n}{x^n}\] 


\[\lim_{x \to 0} \frac{\cos 3x - \cos 7x}{x^2}\] 


\[\lim_{x \to 0} \frac{\sin x^2 \left( 1 - \cos x^2 \right)}{x^6}\] 


\[\lim_{x \to 0} \frac{\tan 3x - 2x}{3x - \sin^2 x}\] 


\[\lim_{x \to 0} \frac{x^2 - \tan 2x}{\tan x}\] 


\[\lim_{x \to 0} \frac{2 \sin x^\circ - \sin 2 x^\circ}{x^3}\] 


\[\lim_{x \to 0} \frac{x \cos x + \sin x}{x^2 + \tan x}\] 


\[\lim_{x \to 0} \frac{ax + x \cos x}{b \sin x}\]


\[\lim_{x \to \pi} \frac{\sin x}{\pi - x}\]


\[\lim_{x \to \frac{\pi}{2}} \frac{\cos^2 x}{1 - \sin x}\]


Evaluate the following limit:

\[\lim_{x \to \frac{\pi}{3}} \frac{\sqrt{1 - \cos6x}}{\sqrt{2}\left( \frac{\pi}{3} - x \right)}\]


\[\lim_{x \to \frac{\pi}{2}} \frac{\sqrt{2 - \sin x} - 1}{\left( \frac{\pi}{2} - x \right)^2}\] 


\[\lim_{x \to \frac{\pi}{8}} \frac{\cot 4x - \cos 4x}{\left( \pi - 8x \right)^3}\] 


\[\lim_{x \to 1} \frac{1 + \cos \pi x}{\left( 1 - x \right)^2}\] 


Evaluate the following limit:

\[\lim_{x \to \pi} \frac{1 - \sin\frac{x}{2}}{\cos\frac{x}{2}\left( \cos\frac{x}{4} - \sin\frac{x}{4} \right)}\]

 


\[\lim_{x \to \frac{\pi}{6}} \frac{\cot^2 x - 3}{cosec x - 2}\]


Write the value of \[\lim_{x \to \pi} \frac{\sin x}{x - \pi} .\]


\[\lim_{x \to 0} \frac{\sin 2x}{x}\] 


If \[f\left( x \right) = x \sin \left( 1/x \right), x \neq 0,\]  then \[\lim_{x \to 0} f\left( x \right) =\] 


\[\lim_{x \to 0} \frac{\sin x^0}{x}\] 


\[\lim_{n \to \infty} \frac{1 - 2 + 3 - 4 + 5 - 6 + . . . . + \left( 2n - 1 \right) - 2n}{\sqrt{n^2 + 1} + \sqrt{n^2 - 1}}\] is equal to 


Evaluate the following limit:

`lim_(x -> 7)[((root(3)(x) - root(3)(7))(root(3)(x) + root(3)(7)))/(x - 7)]`


Evaluate the following limits: `lim_(x ->3) [sqrt(x + 6)/x]`


Evaluate the following limit:

`lim_(x->7)[((root(3)(x)-root(3)(7))(root(3)(x)+root(3)(7)))/(x-7)]`


Evaluate the following limit:

`lim_(x->5)[(x^3-125)/(x^5-3125)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×