Advertisements
Advertisements
Question
\[\lim_{x \to \frac{\pi}{2}} \frac{\sqrt{2 - \sin x} - 1}{\left( \frac{\pi}{2} - x \right)^2}\]
Solution
\[\lim_{x \to \frac{\pi}{2}} \frac{\sqrt{2 - \sin x} - 1}{\left( \frac{\pi}{2} - x \right)^2}\]
\[ = \lim_{h \to 0} \frac{\sqrt{2 - \sin \left( \frac{\pi}{2} - h \right)} - 1}{\left( \frac{\pi}{2} - \left( \frac{\pi}{2} - h \right) \right)^2}\]
\[ = \lim_{h \to 0} \frac{\sqrt{2 - \cos h} - 1}{h^2}\]
\[\text{ Dividing the numerator and thedenominator by } \sqrt{2 - \cos h} + 1: \]
\[ \lim_{h \to 0} \frac{\left( \sqrt{2 - \cos h} - 1 \right) \left( \sqrt{2 - \cos h} + 1 \right)}{\left( \sqrt{2 - \cos h} + 1 \right) h^2}\]
\[ = \lim_{h \to 0} \frac{2 - \cos h - 1}{h^2 \left( \sqrt{2 - \cos h} + 1 \right)}\]
\[ = \lim_{h \to 0} \frac{1 - \cos h}{h^2 \left[ \sqrt{2 - \cos h} + 1 \right]}\]
\[ = \lim_{h \to 0} \frac{2 \sin^2 \frac{h}{2}}{\frac{4 h^2}{4} \left( \sqrt{2 - \cos h} + 1 \right)}\]
\[ = \frac{1}{2} \lim_{h \to 0} \left( \frac{\sin \frac{h}{2}}{\frac{h}{2}} \right)^2 \times \lim_{h \to 0} \left( \frac{1}{\sqrt{2 - \cos h} + 1} \right)\]
\[ = \frac{1}{2 \left( \sqrt{2 - 1} + 1 \right)}\]
\[ = \frac{1}{4}\]
APPEARS IN
RELATED QUESTIONS
\[\lim_{x \to 1} \frac{\sqrt{x + 8}}{\sqrt{x}}\]
\[\lim_{x \to 0} 9\]
\[\lim_{x \to 3} \frac{x^2 - x - 6}{x^3 - 3 x^2 + x - 3}\]
\[\lim_{x \to a} \frac{x^{2/7} - a^{2/7}}{x - a}\]
If \[\lim_{x \to a} \frac{x^9 - a^9}{x - a} = 9,\] find all possible values of a.
If \[\lim_{x \to a} \frac{x^3 - a^3}{x - a} = \lim_{x \to 1} \frac{x^4 - 1}{x - 1},\] find all possible values of a.
\[\lim_{x \to \infty} \left[ x\left\{ \sqrt{x^2 + 1} - \sqrt{x^2 - 1} \right\} \right]\]
\[\lim_{n \to \infty} \left[ \frac{1^3 + 2^3 + . . . . n^3}{n^4} \right]\]
\[\lim_{x \to 0} \frac{\sin 3x}{5x}\]
\[\lim_{x \to 0} \frac{3 \sin x - 4 \sin^3 x}{x}\]
\[\lim_{x \to 0} \frac{\tan 8x}{\sin 2x}\]
\[\lim_{x \to 0} \frac{7x \cos x - 3 \sin x}{4x + \tan x}\]
\[\lim_{x \to 0} \frac{\cos ax - \cos bx}{\cos cx - \cos dx}\]
\[\lim_{x \to 0} \frac{\sin 2x \left( \cos 3x - \cos x \right)}{x^3}\]
\[\lim_{x \to 0} \frac{x \tan x}{1 - \cos 2x}\]
\[\lim_{x \to 0} \frac{ax + x \cos x}{b \sin x}\]
\[\lim_{x \to \frac{\pi}{2}} \frac{\sin 2x}{\cos x}\]
\[\lim_{x \to a} \frac{\cos \sqrt{x} - \cos \sqrt{a}}{x - a}\]
\[\lim_{x \to 1} \frac{1 - x^2}{\sin \pi x}\]
Evaluate the following limit:
\[\lim_{x \to \pi} \frac{1 - \sin\frac{x}{2}}{\cos\frac{x}{2}\left( \cos\frac{x}{4} - \sin\frac{x}{4} \right)}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{{cosec}^2 x - 2}{\cot x - 1}\]
\[\lim_{x \to 0} \frac{\sin 2x}{x}\]
\[\lim_{x \to \infty} \frac{\sin x}{x}\] equals
\[\lim_{x \to 3} \frac{x - 3}{\left| x - 3 \right|},\] is equal to
The value of \[\lim_{x \to \infty} \frac{\sqrt{1 + x^4} + \left( 1 + x^2 \right)}{x^2}\] is
If \[f\left( x \right) = \left\{ \begin{array}{l}x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0\end{array}, \right.\] then \[\lim_{x \to 0} f\left( x \right)\] equals
\[\lim_{x \to \pi/4} \frac{4\sqrt{2} - \left( \cos x + \sin x \right)^5}{1 - \sin 2x}\] is equal to
If α is a repeated root of ax2 + bx + c = 0, then \[\lim_{x \to \alpha} \frac{\tan \left( a x^2 + bx + c \right)}{\left( x - \alpha \right)^2}\]
The value of \[\lim_{x \to \pi/2} \left( \sec x - \tan x \right)\]is
The value of \[\lim_{x \to \infty} \frac{\left( x + 1 \right)^{10} + \left( x + 2 \right)^{10} + . . . + \left( x + 100 \right)^{10}}{x^{10} + {10}^{10}}\] is
If \[f\left( x \right) = \begin{cases}\frac{\sin\left[ x \right]}{\left[ x \right]}, & \left[ x \right] \neq 0 \\ 0, & \left[ x \right] = 0\end{cases}\] where denotes the greatest integer function, then \[\lim_{x \to 0} f\left( x \right)\]
Evaluate the following limit:
`lim_(x -> 5)[(x^3 - 125)/(x^5 - 3125)]`
Evaluate the following limits: `lim_(x -> 0)[((1 - x)^8 - 1)/((1 - x)^2 - 1)]`
Let `f(x) = {{:((k cos x)/(pi - 2x)",", "when" x ≠ pi/2),(3",", x = pi/2 "and if" f(x) = f(pi/2)):}` find the value of k.
Evaluate the Following limit:
`lim_(x->3)[sqrt(x+6)/x]`
Evaluate the following limits: `lim_(x -> 3) [sqrt(x + 6)/x]`
Evaluate the following limit.
`lim_(x->5)[(x^3 -125)/(x^5 - 3125)]`
Evaluate the Following limit:
`lim_(x->7)[((root(3)(x)-root(3)(7))(root(3)(x)+root(3)(7)))/(x-7)]`