English

Lim X → π 4 √ 2 − Cos X − Sin X ( π 4 − X ) 2 - Mathematics

Advertisements
Advertisements

Question

\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} - \cos x - \sin x}{\left( \frac{\pi}{4} - x \right)^2}\] 

Solution

\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} - \cos x - \sin x}{\left( \frac{\pi}{4} - x \right)^2}\]
\[\text{ Dividing the numerator and the denominator by }\sqrt{2}:\]
\[ \lim_{x \to \frac{\pi}{4}} \frac{1 - \left( \frac{1}{\sqrt{2}}\cos x + \frac{1}{\sqrt{2}}\sin x \right)}{\frac{1}{\sqrt{2}} \left( \frac{\pi}{4} - x \right)^2}\]
\[ = \lim_{x \to \frac{\pi}{4}} \frac{1 - \left( \cos \frac{\pi}{4}\cos x + \sin \frac{\pi}{4} \sin x \right)}{\frac{1}{\sqrt{2}} \left( \frac{\pi}{4} - x \right)^2}\]
\[ = \lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2}\left( 1 - \cos \left( \frac{\pi}{4} - x \right) \right)}{\left( \frac{\pi}{4} - x \right)^2}\]
\[ = \lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} \left( 2 \sin^2 \left( \frac{\frac{\pi}{4} - x}{2} \right) \right)}{\left( \frac{\pi}{4} - x \right)^2} \left[ \because 1 - \cos \theta = 2 \sin \frac{2\theta}{2} \right]\]
\[ = 2\sqrt{2} \lim_{x \to \frac{\pi}{4}} \frac{\left[ \sin^2 \left( \frac{\frac{\pi}{4} - x}{2} \right) \right]}{4 \left( \frac{\frac{\pi}{4} - x}{2} \right)^2}\]
\[ = \frac{2\sqrt{2}}{4}\]

\[ = \frac{1}{\sqrt{2}}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: Limits - Exercise 29.8 [Page 62]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 29 Limits
Exercise 29.8 | Q 12 | Page 62

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Show that \[\lim_{x \to 0} \frac{x}{\left| x \right|}\] does not exist.


\[\lim_{x \to 0} \frac{2 x^2 + 3x + 4}{x^2 + 3x + 2}\] 


\[\lim_{x \to a} \frac{\sqrt{x} + \sqrt{a}}{x + a}\] 


\[\lim_{x \to 2} \frac{x^3 - 8}{x^2 - 4}\] 


\[\lim_{x \to - 1/2} \frac{8 x^3 + 1}{2x + 1}\] 


\[\lim_{x \to a} \frac{x^{2/3} - a^{2/3}}{x^{3/4} - a^{3/4}}\] 


If \[\lim_{x \to a} \frac{x^5 - a^5}{x - a} = 405,\]find all possible values of a

 

 


\[\lim_{n \to \infty} \left[ \frac{\left( n + 2 \right)! + \left( n + 1 \right)!}{\left( n + 2 \right)! - \left( n + 1 \right)!} \right]\] 


\[\lim_{x \to \infty} \left[ x\left\{ \sqrt{x^2 + 1} - \sqrt{x^2 - 1} \right\} \right]\] 


\[\lim_{n \to \infty} \left[ \frac{1^2 + 2^2 + . . . + n^2}{n^3} \right]\]


\[\lim_{x \to \infty} \left[ \sqrt{x}\left\{ \sqrt{x + 1} - \sqrt{x} \right\} \right]\] 


Show that \[\lim_{x \to \infty} \left( \sqrt{x^2 + x + 1} - x \right) \neq \lim_{x \to \infty} \left( \sqrt{x^2 + 1} - x \right)\] 


\[\lim_{x \to - \infty} \left( \sqrt{4 x^2 - 7x} + 2x \right)\] 


\[\lim_{x \to 0} \frac{x^2}{\sin x^2}\] 


\[\lim_{x \to 0} \frac{\sin 5x}{\tan 3x}\] 


\[\lim_{h \to 0} \frac{\left( a + h \right)^2 \sin \left( a + h \right) - a^2 \sin a}{h}\] 


\[\lim_{x \to 0} \frac{1 - \cos 2x + \tan^2 x}{x \sin x}\] 


\[\lim_{x \to 0} \frac{x^2 + 1 - \cos x}{x \sin x}\] 


\[\lim_{x \to 0} \frac{\cos 2x - 1}{\cos x - 1}\] 


\[\lim_{x \to 0} \frac{5x + 4 \sin 3x}{4 \sin 2x + 7x}\]


\[\lim_{x \to 0} \frac{3 \sin x - \sin 3x}{x^3}\]


\[\lim_{x \to 0} \frac{\tan 2x - \sin 2x}{x^3}\]


\[\lim_{x \to 0} \frac{\sin ax + bx}{ax + \sin bx}\]


Evaluate the following limit: 

\[\lim_{h \to 0} \frac{\left( a + h \right)^2 \sin\left( a + h \right) - a^2 \sin a}{h}\] 


\[\lim_{x \to 1} \frac{1 - x^2}{\sin 2\pi x}\] 


\[\lim_{x \to 1} \frac{1 - x^2}{\sin \pi x}\]


\[\lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{1 - \sqrt{2} \sin x}\] 


\[\lim_{x \to \frac{\pi}{2}} \left( \frac{\pi}{2} - x \right) \tan x\]


\[\lim_{x \to \frac{\pi}{4}} \frac{{cosec}^2 x - 2}{\cot x - 1}\]


Write the value of \[\lim_{x \to 0^+} \left[ x \right] .\]


Write the value of \[\lim_{x \to 1^-} x - \left[ x \right] .\] 


If \[f\left( x \right) = x \sin \left( 1/x \right), x \neq 0,\]  then \[\lim_{x \to 0} f\left( x \right) =\] 


\[\lim_{n \to \infty} \left\{ \frac{1}{1 - n^2} + \frac{2}{1 - n^2} + . . . + \frac{n}{1 - n^2} \right\}\]


\[\lim_{n \to \infty} \left\{ \frac{1}{1 . 3} + \frac{1}{3 . 5} + \frac{1}{5 . 7} + . . . + \frac{1}{\left( 2n + 1 \right) \left( 2n + 3 \right)} \right\}\]is equal to


\[\lim_{x \to 3} \frac{\sum^n_{r = 1} x^r - \sum^n_{r = 1} 3^r}{x - 3}\]is real to


The value of \[\lim_{x \to \infty} \frac{\left( x + 1 \right)^{10} + \left( x + 2 \right)^{10} + . . . + \left( x + 100 \right)^{10}}{x^{10} + {10}^{10}}\] is 


Evaluate the following limits: `lim_(x -> 5)[(x^3 - 125)/(x^2 - 25)]`


Evaluate `lim_(h -> 0) ((a + h)^2 sin (a + h) - a^2 sina)/h`


Evaluate the following limit.

`lim_(x->5)[(x^3 -125)/(x^5 - 3125)]`


Evaluate the following limit:

`lim _ (x -> 5) [(x^3 - 125) / (x^5 - 3125)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×