English

Show that Lim X → ∞ ( √ X 2 + X + 1 − X ) ≠ Lim X → ∞ ( √ X 2 + 1 − X ) - Mathematics

Advertisements
Advertisements

Question

Show that \[\lim_{x \to \infty} \left( \sqrt{x^2 + x + 1} - x \right) \neq \lim_{x \to \infty} \left( \sqrt{x^2 + 1} - x \right)\] 

Solution

\[\lim_{x \to \infty} \left( \sqrt{x^2 + x + 1} - x \right) \neq \lim_{x \to \infty} \left( \sqrt{x^2 + 1} - x \right)\]
\[\text{ LHS }: \]
\[ \lim_{x \to \infty} \left( \left( \sqrt{x^2 + x + 1} - x \right) \right)\]
\[\text{ Rationalising the numerator }: \]
\[ \lim_{x \to \infty} \left[ \frac{\left( \sqrt{x^2 + x + 1} - x \right) \left( \sqrt{x^2 + x + 1} + x \right)}{\left( \sqrt{x^2 + x + 1} + x \right)} \right]\]
\[ = \lim_{x \to \infty} \left[ \frac{\left( x^2 + x + 1 \right) - x^2}{\left( \sqrt{x^2 + x + 1} + x \right)} \right]\]
\[ = \lim_{x \to \infty} \left[ \frac{x + 1}{\left( \sqrt{x^2 + x + 1} + x \right)} \right]\]
\[\text{ Dividing the numerator and the denominator by x }: \]
\[ \lim_{x \to \infty} \left[ \frac{1 + \frac{1}{x}}{\frac{\sqrt{x^2 + x + 1}}{x} + 1} \right]\]
\[ = \lim_{x \to \infty} \left[ \frac{1 + \frac{1}{x}}{\sqrt{\frac{x^2 + x + 1}{x^2}} + 1} \right]\]
\[ = \lim_{x \to \infty} \left[ \frac{1 + \frac{1}{x}}{\sqrt{1 + \frac{1}{x} + \frac{1}{x^2}} + 1} \right]\]
\[\text{ When x } \to \infty , \text{ then } \frac{1}{x} \to 0 . \]
\[\frac{1}{\sqrt{1} + 1}\]
\[ = \frac{1}{2}\]
\[RHS: \]
\[ \lim_{x \to \infty} \left( \sqrt{x^2 + 1} - x \right) \left[ \text{ from }  \infty - \infty \right]\]

Rationalising the numerator: 

\[\lim_{x \to \infty} \left[ \frac{\left( \sqrt{x^2 + 1} - x \right) \left( \sqrt{x^2 + 1} + x \right)}{\left( \sqrt{x^2 + 1} + x \right)} \right]\]
\[ = \lim_{x \to \infty} \left[ \frac{x^2 + 1 - x^2}{\left( \sqrt{x^2 + 1} + x \right)} \right]\]
\[ = \frac{1}{\infty}\]
\[ = 0\]
\[ \therefore \lim_{x \to \infty} \left[ \sqrt{x^2 + x + 1} - x \right] \neq \lim_{x \to \infty} \left( \sqrt{x^2 + 1} - x \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: Limits - Exercise 29.6 [Page 39]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 29 Limits
Exercise 29.6 | Q 22 | Page 39

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\lim_{x \to 1} \frac{1 + \left( x - 1 \right)^2}{1 + x^2}\]


\[\lim_{x \to - 1}{\left( 4 x^2 + 2 \right)}\]


\[\lim_{x \to \sqrt{2}} \frac{x^2 - 2}{x^2 + \sqrt{2}x - 4}\]


\[\lim_{x \to 4} \frac{x^2 - 16}{\sqrt{x} - 2}\] 


\[\lim_{x \to 0} \frac{\left( a + x \right)^2 - a^2}{x}\] 


Evaluate the following limit:

\[\lim_{x \to 1} \frac{x^7 - 2 x^5 + 1}{x^3 - 3 x^2 + 2}\] 


\[\lim_{x \to - 1/2} \frac{8 x^3 + 1}{2x + 1}\]


\[\lim_{x \to - 1} \frac{x^3 + 1}{x + 1}\] 


\[\lim_{x \to a} \frac{x^{2/3} - a^{2/3}}{x^{3/4} - a^{3/4}}\] 


If \[\lim_{x \to a} \frac{x^9 - a^9}{x - a} = \lim_{x \to 5} \left( 4 + x \right),\] find all possible values of a


\[\lim_{x \to \infty} \frac{\sqrt{x^2 + a^2} - \sqrt{x^2 + b^2}}{\sqrt{x^2 + c^2} - \sqrt{x^2 + d^2}}\] 


\[f\left( x \right) = \frac{a x^2 + b}{x^2 + 1}, \lim_{x \to 0} f\left( x \right) = 1\] and \[\lim_{x \to \infty} f\left( x \right) = 1,\]then prove that f(−2) = f(2) = 1


\[\lim_{x \to 0} \frac{\sin x^0}{x}\] 


\[\lim_{x \to 0} \frac{\cos ax - \cos bx}{\cos cx - \cos dx}\] 


\[\lim_{x \to 0} \frac{3 \sin 2x + 2x}{3x + 2 \tan 3x}\] 


\[\lim_{x \to 0} \frac{\sec 5x - \sec 3x}{\sec 3x - \sec x}\]


\[\lim_{x \to 0} \frac{\sqrt{2} - \sqrt{1 + \cos x}}{x^2}\] 


\[\lim_{x \to \frac{\pi}{2}} \frac{\cos^2 x}{1 - \sin x}\]


\[\lim_{x \to 1} \frac{1 - x^2}{\sin 2\pi x}\] 


\[\lim_{x \to - 1} \frac{x^2 - x - 2}{\left( x^2 + x \right) + \sin \left( x + 1 \right)}\]


\[\lim_{x \to \pi} \frac{\sqrt{2 + \cos x} - 1}{\left( \pi - x \right)^2}\]


\[\lim_{x \to \frac{\pi}{2}} \left( \frac{\pi}{2} - x \right) \tan x\]


\[\lim_{x \to \frac{\pi}{2}} \frac{\left( \frac{\pi}{2} - x \right) \sin x - 2 \cos x}{\left( \frac{\pi}{2} - x \right) + \cot x}\]


\[\lim_{x \to \frac{\pi}{4}} \frac{{cosec}^2 x - 2}{\cot x - 1}\]


\[\lim_{x \to 0} \frac{\log \left( 3 + x \right) - \log \left( 3 - x \right)}{x}\] 


\[\lim_{x \to 0^-} \frac{\sin \left[ x \right]}{\left[ x \right]} .\] 


Write the value of \[\lim_{x \to 0^-} \left[ x \right] .\]


Write the value of \[\lim_{x \to 0^-} \frac{\sin \left[ x \right]}{\left[ x \right]} .\]


\[\lim_{n \to \infty} \frac{1^2 + 2^2 + 3^2 + . . . + n^2}{n^3}\] 


\[\lim_{n \to \infty} \frac{1 - 2 + 3 - 4 + 5 - 6 + . . . . + \left( 2n - 1 \right) - 2n}{\sqrt{n^2 + 1} + \sqrt{n^2 - 1}}\] is equal to 


If \[f\left( x \right) = \left\{ \begin{array}{l}x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0\end{array}, \right.\] then \[\lim_{x \to 0} f\left( x \right)\]  equals 


The value of \[\lim_{x \to \infty} \frac{\left( x + 1 \right)^{10} + \left( x + 2 \right)^{10} + . . . + \left( x + 100 \right)^{10}}{x^{10} + {10}^{10}}\] is 


Evaluate the following limit:

`lim_(x -> 5)[(x^3 - 125)/(x^5 - 3125)]`


Evaluate the following limit:

`lim_(x -> 7)[((root(3)(x) - root(3)(7))(root(3)(x) + root(3)(7)))/(x - 7)]`


Evaluate the following limits: `lim_(x -> 0)[(root(3)(1 + x) - sqrt(1 + x))/x]`


Evaluate the following limit:

`lim_(x->3)[sqrt(x+6)/x]`


Evaluate the following limit:

`\underset{x->5}{lim}[(x^3 - 125)/(x^5 - 3125)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×