English

F ( X ) = a X 2 + B X 2 + 1 , Lim X → 0 F ( X ) = 1 and Lim X → ∞ F ( X ) = 1 , Then Prove that F(−2) = F(2) = 1 - Mathematics

Advertisements
Advertisements

Question

\[f\left( x \right) = \frac{a x^2 + b}{x^2 + 1}, \lim_{x \to 0} f\left( x \right) = 1\] and \[\lim_{x \to \infty} f\left( x \right) = 1,\]then prove that f(−2) = f(2) = 1

Solution

\[f\left( x \right) = \frac{a x^2 + b}{x^2 + 1}\]
\[ \lim_{x \to 0} f\left( x \right) = 1\]
\[ \Rightarrow \lim_{x \to 0} \left[ \frac{a x^2 + b}{x^2 + 1} \right] = 1\]
\[ \Rightarrow \frac{a \times 0 + b}{a + 1} = 1\]
\[ \Rightarrow b = 1\]
\[\text{ Also }, \lim_{x \to \infty} f\left( x \right) = 1\]
\[ \lim_{x \to \infty} \left[ \frac{a x^2 + b}{x^2 + 1} \right] = 1\]Dividing the numerator and the denominator by x2

\[\Rightarrow \lim_{x \to \infty} \left[ \frac{a + \frac{b}{x^2}}{1 + \frac{1}{x^2}} \right] = 1\]
\[As x \to \infty , \frac{1}{x}, \frac{1}{x^2} \to 0\]
\[ \Rightarrow \frac{a + 0}{1 + 0} = 1\]
\[ \Rightarrow a = 1\]
\[ \therefore a = 1, b = 1\]
\[ \Rightarrow f\left( x \right) = \frac{x^2 + 1}{x^2 + 1} = 1\]
\[f\left( - 2 \right) = 1 \left[ \text{ Since f }\left( x \right) \text{ is a constant function, its value does not depend on x } . \right]\]
\[f\left( 2 \right) = 1\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: Limits - Exercise 29.6 [Page 39]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 29 Limits
Exercise 29.6 | Q 21 | Page 39

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\lim_{x \to 3} \frac{\sqrt{2x + 3}}{x + 3}\] 


\[\lim_{x \to 0} \frac{x^{2/3} - 9}{x - 27}\]


\[\lim_{x \to 2} \left( 3 - x \right)\] 


\[\lim_{x \to - 1}{\left( 4 x^2 + 2 \right)}\]


\[\lim_{x \to \sqrt{3}} \frac{x^4 - 9}{x^2 + 4\sqrt{3}x - 15}\]


\[\lim_{x \to - 2} \frac{x^3 + x^2 + 4x + 12}{x^3 - 3x + 2}\]


\[\lim_{x \to a} \frac{\left( x + 2 \right)^{5/2} - \left( a + 2 \right)^{5/2}}{x - a}\] 


If \[\lim_{x \to a} \frac{x^9 - a^9}{x - a} = \lim_{x \to 5} \left( 4 + x \right),\] find all possible values of a


\[\lim_{x \to \infty} \sqrt{x^2 + 7x - x}\] 


\[\lim_{n \to \infty} \left[ \frac{1^2 + 2^2 + . . . + n^2}{n^3} \right]\]


\[\lim_{x \to 0} \frac{\tan mx}{\tan nx}\] 


\[\lim_{x \to 0} \frac{x \cos x + 2 \sin x}{x^2 + \tan x}\] 


\[\lim_{x \to 0} \frac{\sin 2x \left( \cos 3x - \cos x \right)}{x^3}\] 


\[\lim_{x \to 0} \frac{\sin \left( 3 + x \right) - \sin \left( 3 - x \right)}{x}\] 


\[\lim_{x \to 0} \frac{\cos 2x - 1}{\cos x - 1}\] 


\[\lim_{x \to 0} \frac{3 \sin^2 x - 2 \sin x^2}{3 x^2}\] 


\[\lim_{x \to 0} \frac{\sin ax + bx}{ax + \sin bx}\]


If  \[\lim_{x \to 0} kx  cosec x = \lim_{x \to 0} x  cosec kx,\] 


\[\lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{x - \frac{\pi}{4}}\] 


\[\lim_{n \to \infty} 2^{n - 1} \sin \left( \frac{a}{2^n} \right)\] 

 


\[\lim_{x \to \pi} \frac{1 + \cos x}{\tan^2 x}\] 


\[\lim_{x \to \frac{3\pi}{2}} \frac{1 + {cosec}^3 x}{\cot^2 x}\]


\[\lim_{x \to 0} \frac{\log \left( a + x \right) - \log a}{x}\]


\[\lim_{x \to 0} \left( \cos x + \sin x \right)^{1/x}\]


Write the value of \[\lim_{x \to 0} \frac{\sqrt{1 - \cos 2x}}{x} .\]


\[\lim_{x \to 0^-} \frac{\sin \left[ x \right]}{\left[ x \right]} .\] 


\[\lim_{x \to 0} \frac{\sin 2x}{x}\] 


\[\lim_{x \to 3} \frac{x - 3}{\left| x - 3 \right|},\] is equal to


\[\lim_{x \to 1} \frac{\sin \pi x}{x - 1}\] 


\[\lim_{x \to 1} \left[ x - 1 \right]\] where [.] is the greatest integer function, is equal to 


Evaluate the following limit:

`lim_(x -> 3) [sqrt(x + 6)/x]`


Evaluate the following limit:

`lim_(x -> 7)[((root(3)(x) - root(3)(7))(root(3)(x) + root(3)(7)))/(x - 7)]`


If f(x) = `{{:(1 if x  "is rational"),(-1 if x  "is rational"):}` is continuous on ______.


Evaluate the Following limit:

`lim_(x->5) [(x^3 -125)/(x^5-3125)]`


Evaluate the following limit:

`lim_(x->3)[sqrt(x+6)/x]`


Evaluate the following limits: `lim_(x -> 5)[(x^3 - 125)/(x^5 - 3125)]`


Evaluate the following limit:

`lim _ (x -> 5) [(x^3 - 125) / (x^5 - 3125)]`


Evaluate the following limit:

`\underset{x->5}{lim}[(x^3 - 125)/(x^5 - 3125)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×