English

Write the Value of Lim X → 0 √ 1 − Cos 2 X X . - Mathematics

Advertisements
Advertisements

Question

Write the value of \[\lim_{x \to 0} \frac{\sqrt{1 - \cos 2x}}{x} .\]

Solution

 
\[\lim_{x \to 0} \left( \frac{\sqrt{1 - \cos 2x}}{x} \right)\]
\[ = \lim_{x \to 0} \left( \frac{\sqrt{2 \sin^2 x}}{x} \right)\]
\[ = \sqrt{2} \lim_{x \to 0} \left( \frac{\sqrt{\sin^2 x}}{x} \right)\]
\[ = \sqrt{2} \lim_{x \to 0} \left( \frac{\left| \sin x \right|}{x} \right)\]
\[\text{ LHL }: \]
\[ = \sqrt{2} \lim_{x \to 0^-} \left( \frac{\left| \sin x \right|}{x} \right)\]
\[\text{ Let } x = 0 - h, \text{ where } h \to 0 . \]
\[ = \sqrt{2} \lim_{h \to 0} \left( \frac{\left| \sin \left( - h \right) \right|}{- h} \right)\]
\[ = \sqrt{2} \lim_{h \to 0} \left( \frac{\sin h}{- h} \right)\]
\[ = - \sqrt{2}\]
\[\text{ RHL }: \]
\[ = \sqrt{2} \lim_{x \to 0^+} \left( \frac{\left| \sin x \right|}{x} \right)\]
\[\text{ Let } x = 0 + h, \text{ where } h \to 0 . \]
\[ = \sqrt{2} \lim_{h \to 0} \frac{\left| \sin h \right|}{h} = \sqrt{2}\]
\[\text{ LHL } \neq RHL\]
\[\text{ Thus }, \lim_{x \to 0} \left( \frac{\sqrt{1 - \cos 2x}}{x} \right) \text{ does not exist } .\]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: Limits - Exercise 29.12 [Page 77]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 29 Limits
Exercise 29.12 | Q 1 | Page 77

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Suppose f(x)  = `{(a+bx, x < 1),(4, x = 1),(b-ax, x > 1):}`  and if `lim_(x -> 1) f(x) = f(1)` what are possible values of a and b?


\[\lim_{x \to - 1} \frac{x^3 + 1}{x + 1}\] 


\[\lim_{x \to 3} \left( x^2 - 9 \right) \left[ \frac{1}{x + 3} + \frac{1}{x - 3} \right]\] 


\[\lim_{x \to 1} \frac{1 - x^{- 1/3}}{1 - x^{- 2/3}}\] 


\[\lim_{x \to 3} \frac{x^2 - x - 6}{x^3 - 3 x^2 + x - 3}\]


\[\lim_{x \to 2} \left[ \frac{1}{x - 2} - \frac{2\left( 2x - 3 \right)}{x^3 - 3 x^2 + 2x} \right]\] 


Evaluate the following limit:

\[\lim_{x \to 1} \frac{x^7 - 2 x^5 + 1}{x^3 - 3 x^2 + 2}\] 


\[\lim_{x \to a} \frac{x^{5/7} - a^{5/7}}{x^{2/7} - a^{2/7}}\] 


\[\lim_{x \to 1} \frac{x^{15} - 1}{x^{10} - 1}\] 


If \[\lim_{x \to a} \frac{x^9 - a^9}{x - a} = 9,\] find all possible values of a


Evaluate: \[\lim_{n \to \infty} \frac{1^4 + 2^4 + 3^4 + . . . + n^4}{n^5} - \lim_{n \to \infty} \frac{1^3 + 2^3 + . . . + n^3}{n^5}\] 


\[\lim_{x \to 0} \frac{3 \sin 2x + 2x}{3x + 2 \tan 3x}\] 


\[\lim_{x \to 0} \frac{2x - \sin x}{\tan x + x}\] 


\[\lim_{x \to 0} \frac{\sin 3x - \sin x}{\sin x}\] 


\[\lim_{x \to 0} \frac{\tan 3x - 2x}{3x - \sin^2 x}\] 


\[\lim_{x \to 0} \frac{\sec 5x - \sec 3x}{\sec 3x - \sec x}\]


\[\lim_{x \to 0} \frac{x^2 - \tan 2x}{\tan x}\] 


\[\lim_{x \to 0} \frac{x^3 \cot x}{1 - \cos x}\] 


\[\lim_{x \to 0} \frac{1 - \cos 4x}{x^2}\] 


\[\lim_{x \to 0} \frac{1 - \cos 5x}{1 - \cos 6x}\]


\[\lim_{x \to \frac{\pi}{2}} \frac{\sin 2x}{\cos x}\] 


\[\lim_{x \to \frac{\pi}{3}} \frac{\sqrt{3} - \tan x}{\pi - 3x}\]


\[\lim_{x \to a} \frac{\cos \sqrt{x} - \cos \sqrt{a}}{x - a}\] 


\[\lim_{x \to 2} \frac{x^2 - x - 2}{x^2 - 2x + \sin \left( x - 2 \right)}\] 


\[\lim_{x \to 0} \frac{\log \left( 3 + x \right) - \log \left( 3 - x \right)}{x}\] 


Write the value of \[\lim_{x \to \pi} \frac{\sin x}{x - \pi} .\]


\[\lim_{x \to \infty} \frac{\sin x}{x}\] equals 


\[\lim_{h \to 0} \left\{ \frac{1}{h\sqrt[3]{8 + h}} - \frac{1}{2h} \right\} =\]


\[\lim_{n \to \infty} \left\{ \frac{1}{1 . 3} + \frac{1}{3 . 5} + \frac{1}{5 . 7} + . . . + \frac{1}{\left( 2n + 1 \right) \left( 2n + 3 \right)} \right\}\]is equal to


\[\lim_{x \to \pi/4} \frac{4\sqrt{2} - \left( \cos x + \sin x \right)^5}{1 - \sin 2x}\] is equal to 


\[\lim_{x \to 2} \frac{\sqrt{1 + \sqrt{2 + x} - \sqrt{3}}}{x - 2}\] is equal to 


The value of \[\lim_{n \to \infty} \left\{ \frac{1 + 2 + 3 + . . . + n}{n + 2} - \frac{n}{2} \right\}\] 


if `lim_(x -> 2) (x^"n"- 2^"n")/(x - 2)` = 80 then find the value of n.


Evaluate `lim_(h -> 0) ((a + h)^2 sin (a + h) - a^2 sina)/h`


If `lim_(x -> 1) (x^4 - 1)/(x - 1) = lim_(x -> k) (x^3 - l^3)/(x^2 - k^2)`, then find the value of k.


Evaluate the following limit.

`lim_(x->5)[(x^3 -125)/(x^5 - 3125)]`


Evaluate the following limit:

`\underset{x->5}{lim}[(x^3 - 125)/(x^5 - 3125)]`


Evaluate the Following limit:

`lim_(x->7)[[(root[3][x] - root[3][7])(root[3][x] + root[3][7])] / (x - 7)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×